Files
wireguard-rs/src/wireguard/wireguard.rs
Mathias Hall-Andersen 8107973342 Work on pure WireGuard test
2019-10-23 14:00:21 +02:00

471 lines
17 KiB
Rust

use super::constants::*;
use super::handshake;
use super::router;
use super::timers::{Events, Timers};
use super::bind::Reader as BindReader;
use super::bind::{Bind, Writer};
use super::tun::{Reader, Tun, MTU};
use super::Endpoint;
use hjul::Runner;
use std::fmt;
use std::ops::Deref;
use std::sync::atomic::{AtomicBool, AtomicU64, AtomicUsize, Ordering};
use std::sync::Arc;
use std::thread;
use std::time::{Duration, Instant, SystemTime};
use std::collections::HashMap;
use log::debug;
use rand::rngs::OsRng;
use spin::{Mutex, RwLock, RwLockReadGuard};
use byteorder::{ByteOrder, LittleEndian};
use crossbeam_channel::{bounded, Sender};
use x25519_dalek::{PublicKey, StaticSecret};
const SIZE_HANDSHAKE_QUEUE: usize = 128;
const THRESHOLD_UNDER_LOAD: usize = SIZE_HANDSHAKE_QUEUE / 4;
const DURATION_UNDER_LOAD: Duration = Duration::from_millis(10_000);
pub struct Peer<T: Tun, B: Bind> {
pub router: Arc<router::Peer<B::Endpoint, Events<T, B>, T::Writer, B::Writer>>,
pub state: Arc<PeerInner<B>>,
}
pub struct PeerInner<B: Bind> {
pub keepalive: AtomicUsize, // keepalive interval
pub rx_bytes: AtomicU64,
pub tx_bytes: AtomicU64,
pub last_handshake: Mutex<SystemTime>,
pub handshake_queued: AtomicBool,
pub queue: Mutex<Sender<HandshakeJob<B::Endpoint>>>, // handshake queue
pub pk: PublicKey, // DISCUSS: Change layout in handshake module (adopt pattern of router), to avoid this. TODO: remove
pub timers: RwLock<Timers>, //
}
pub struct WireguardInner<T: Tun, B: Bind> {
// provides access to the MTU value of the tun device
// (otherwise owned solely by the router and a dedicated read IO thread)
mtu: T::MTU,
send: RwLock<Option<B::Writer>>,
// identify and configuration map
peers: RwLock<HashMap<[u8; 32], Peer<T, B>>>,
// cryptkey router
router: router::Device<B::Endpoint, Events<T, B>, T::Writer, B::Writer>,
// handshake related state
handshake: RwLock<Handshake>,
under_load: AtomicBool,
pending: AtomicUsize, // num of pending handshake packets in queue
queue: Mutex<Sender<HandshakeJob<B::Endpoint>>>,
}
pub enum HandshakeJob<E> {
Message(Vec<u8>, E),
New(PublicKey),
}
#[derive(Clone)]
pub struct WireguardHandle<T: Tun, B: Bind> {
inner: Arc<WireguardInner<T, B>>,
}
impl<T: Tun, B: Bind> Clone for Peer<T, B> {
fn clone(&self) -> Peer<T, B> {
Peer {
router: self.router.clone(),
state: self.state.clone(),
}
}
}
impl<B: Bind> PeerInner<B> {
#[inline(always)]
pub fn timers(&self) -> RwLockReadGuard<Timers> {
self.timers.read()
}
}
impl<T: Tun, B: Bind> fmt::Display for Peer<T, B> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "peer()")
}
}
impl<T: Tun, B: Bind> Deref for Peer<T, B> {
type Target = PeerInner<B>;
fn deref(&self) -> &Self::Target {
&self.state
}
}
impl<B: Bind> PeerInner<B> {
/* Queue a handshake request for the parallel workers
* (if one does not already exist)
*/
pub fn new_handshake(&self) {
if !self.handshake_queued.swap(true, Ordering::SeqCst) {
self.queue.lock().send(HandshakeJob::New(self.pk)).unwrap();
}
}
}
struct Handshake {
device: handshake::Device,
active: bool,
}
impl<T: Tun, B: Bind> Deref for WireguardHandle<T, B> {
type Target = Arc<WireguardInner<T, B>>;
fn deref(&self) -> &Self::Target {
&self.inner
}
}
pub struct Wireguard<T: Tun, B: Bind> {
runner: Runner,
state: WireguardHandle<T, B>,
}
/* Returns the padded length of a message:
*
* # Arguments
*
* - `size` : Size of unpadded message
* - `mtu` : Maximum transmission unit of the device
*
* # Returns
*
* The padded length (always less than or equal to the MTU)
*/
#[inline(always)]
const fn padding(size: usize, mtu: usize) -> usize {
#[inline(always)]
const fn min(a: usize, b: usize) -> usize {
let m = (a > b) as usize;
a * m + (1 - m) * b
}
let pad = MESSAGE_PADDING_MULTIPLE;
min(mtu, size + (pad - size % pad) % pad)
}
impl<T: Tun, B: Bind> Wireguard<T, B> {
pub fn clear_peers(&self) {
self.state.peers.write().clear();
}
pub fn remove_peer(&self, pk: &PublicKey) {
self.state.peers.write().remove(pk.as_bytes());
}
pub fn lookup_peer(&self, pk: &PublicKey) -> Option<Peer<T, B>> {
self.state
.peers
.read()
.get(pk.as_bytes())
.map(|p| p.clone())
}
pub fn list_peers(&self) -> Vec<Peer<T, B>> {
let peers = self.state.peers.read();
let mut list = Vec::with_capacity(peers.len());
for (k, v) in peers.iter() {
debug_assert!(k == v.pk.as_bytes());
list.push(v.clone());
}
list
}
pub fn set_key(&self, sk: Option<StaticSecret>) {
let mut handshake = self.state.handshake.write();
match sk {
None => {
let mut rng = OsRng::new().unwrap();
handshake.device.set_sk(StaticSecret::new(&mut rng));
handshake.active = false;
}
Some(sk) => {
handshake.device.set_sk(sk);
handshake.active = true;
}
}
}
pub fn get_sk(&self) -> Option<StaticSecret> {
let handshake = self.state.handshake.read();
if handshake.active {
Some(handshake.device.get_sk())
} else {
None
}
}
pub fn new_peer(&self, pk: PublicKey) {
let state = Arc::new(PeerInner {
pk,
last_handshake: Mutex::new(SystemTime::UNIX_EPOCH),
handshake_queued: AtomicBool::new(false),
queue: Mutex::new(self.state.queue.lock().clone()),
keepalive: AtomicUsize::new(0),
rx_bytes: AtomicU64::new(0),
tx_bytes: AtomicU64::new(0),
timers: RwLock::new(Timers::dummy(&self.runner)),
});
// create a router peer
let router = Arc::new(self.state.router.new_peer(state.clone()));
// add to the handshake device
self.state.handshake.write().device.add(pk).unwrap(); // TODO: handle adding of public key for interface
// form WireGuard peer
let peer = Peer { router, state };
/* The need for dummy timers arises from the chicken-egg
* problem of the timer callbacks being able to set timers themselves.
*
* This is in fact the only place where the write lock is ever taken.
* TODO: Consider the ease of using atomic pointers instead.
*/
*peer.timers.write() = Timers::new(&self.runner, peer.clone());
// finally, add the peer to the wireguard device
let mut peers = self.state.peers.write();
peers.entry(*pk.as_bytes()).or_insert(peer);
}
/* Begin consuming messages from the reader.
*
* Any previous reader thread is stopped by closing the previous reader,
* which unblocks the thread and causes an error on reader.read
*/
pub fn add_reader(&self, reader: B::Reader) {
let wg = self.state.clone();
thread::spawn(move || {
let mut last_under_load =
Instant::now() - DURATION_UNDER_LOAD - Duration::from_millis(1000);
loop {
// create vector big enough for any message given current MTU
let size = wg.mtu.mtu() + handshake::MAX_HANDSHAKE_MSG_SIZE;
let mut msg: Vec<u8> = Vec::with_capacity(size);
msg.resize(size, 0);
// read UDP packet into vector
let (size, src) = match reader.read(&mut msg) {
Err(e) => {
debug!("Bind reader closed with {}", e);
return;
}
Ok(v) => v,
};
msg.truncate(size);
// message type de-multiplexer
if msg.len() < std::mem::size_of::<u32>() {
continue;
}
match LittleEndian::read_u32(&msg[..]) {
handshake::TYPE_COOKIE_REPLY
| handshake::TYPE_INITIATION
| handshake::TYPE_RESPONSE => {
// update under_load flag
if wg.pending.fetch_add(1, Ordering::SeqCst) > THRESHOLD_UNDER_LOAD {
last_under_load = Instant::now();
wg.under_load.store(true, Ordering::SeqCst);
} else if last_under_load.elapsed() > DURATION_UNDER_LOAD {
wg.under_load.store(false, Ordering::SeqCst);
}
wg.queue
.lock()
.send(HandshakeJob::Message(msg, src))
.unwrap();
}
router::TYPE_TRANSPORT => {
// transport message
let _ = wg.router.recv(src, msg).map_err(|e| {
debug!("Failed to handle incoming transport message: {}", e);
});
}
_ => (),
}
}
});
}
pub fn set_writer(&self, writer: B::Writer) {
// TODO: Consider unifying these and avoid Clone requirement on writer
*self.state.send.write() = Some(writer.clone());
self.state.router.set_outbound_writer(writer);
}
pub fn new(mut readers: Vec<T::Reader>, writer: T::Writer, mtu: T::MTU) -> Wireguard<T, B> {
// create device state
let mut rng = OsRng::new().unwrap();
let (tx, rx): (Sender<HandshakeJob<B::Endpoint>>, _) = bounded(SIZE_HANDSHAKE_QUEUE);
let wg = Arc::new(WireguardInner {
mtu: mtu.clone(),
peers: RwLock::new(HashMap::new()),
send: RwLock::new(None),
router: router::Device::new(num_cpus::get(), writer), // router owns the writing half
pending: AtomicUsize::new(0),
handshake: RwLock::new(Handshake {
device: handshake::Device::new(StaticSecret::new(&mut rng)),
active: false,
}),
under_load: AtomicBool::new(false),
queue: Mutex::new(tx),
});
// start handshake workers
for _ in 0..num_cpus::get() {
let wg = wg.clone();
let rx = rx.clone();
thread::spawn(move || {
// prepare OsRng instance for this thread
let mut rng = OsRng::new().unwrap();
// process elements from the handshake queue
for job in rx {
wg.pending.fetch_sub(1, Ordering::SeqCst);
let state = wg.handshake.read();
if !state.active {
continue;
}
match job {
HandshakeJob::Message(msg, src) => {
// feed message to handshake device
let src_validate = (&src).into_address(); // TODO avoid
// process message
match state.device.process(
&mut rng,
&msg[..],
if wg.under_load.load(Ordering::Relaxed) {
Some(&src_validate)
} else {
None
},
) {
Ok((pk, resp, keypair)) => {
// send response (might be cookie reply or handshake response)
let mut resp_len: u64 = 0;
if let Some(msg) = resp {
resp_len = msg.len() as u64;
let send: &Option<B::Writer> = &*wg.send.read();
if let Some(writer) = send.as_ref() {
let _ = writer.write(&msg[..], &src).map_err(|e| {
debug!(
"handshake worker, failed to send response, error = {}",
e
)
});
}
}
// update peer state
if let Some(pk) = pk {
// authenticated handshake packet received
if let Some(peer) = wg.peers.read().get(pk.as_bytes()) {
// add to rx_bytes and tx_bytes
let req_len = msg.len() as u64;
peer.rx_bytes.fetch_add(req_len, Ordering::Relaxed);
peer.tx_bytes.fetch_add(resp_len, Ordering::Relaxed);
// update endpoint
peer.router.set_endpoint(src);
// update timers after sending handshake response
if resp_len > 0 {
peer.state.sent_handshake_response();
}
// add resulting keypair to peer
keypair.map(|kp| {
// free any unused ids
for id in peer.router.add_keypair(kp) {
state.device.release(id);
}
});
}
}
}
Err(e) => debug!("handshake worker, error = {:?}", e),
}
}
HandshakeJob::New(pk) => {
let _ = state.device.begin(&mut rng, &pk).map(|msg| {
if let Some(peer) = wg.peers.read().get(pk.as_bytes()) {
let _ = peer.router.send(&msg[..]).map_err(|e| {
debug!("handshake worker, failed to send handshake initiation, error = {}", e)
});
peer.state.sent_handshake_initiation();
}
});
}
}
}
});
}
// start TUN read IO threads (multiple threads to support multi-queue interfaces)
debug_assert!(
readers.len() > 0,
"attempted to create WG device without TUN readers"
);
while let Some(reader) = readers.pop() {
let wg = wg.clone();
let mtu = mtu.clone();
thread::spawn(move || loop {
// create vector big enough for any transport message (based on MTU)
let mtu = mtu.mtu();
let size = mtu + router::SIZE_MESSAGE_PREFIX;
let mut msg: Vec<u8> = Vec::with_capacity(size + router::CAPACITY_MESSAGE_POSTFIX);
msg.resize(size, 0);
// read a new IP packet
let payload = match reader.read(&mut msg[..], router::SIZE_MESSAGE_PREFIX) {
Ok(payload) => payload,
Err(e) => {
debug!("TUN worker, failed to read from tun device: {}", e);
return;
}
};
debug!("TUN worker, IP packet of {} bytes (MTU = {})", payload, mtu);
// truncate padding
let payload = padding(payload, mtu);
msg.truncate(router::SIZE_MESSAGE_PREFIX + payload);
debug_assert!(payload <= mtu);
debug_assert_eq!(
if payload < mtu {
(msg.len() - router::SIZE_MESSAGE_PREFIX) % MESSAGE_PADDING_MULTIPLE
} else {
0
},
0
);
// crypt-key route
let e = wg.router.send(msg);
debug!("TUN worker, router returned {:?}", e);
});
}
Wireguard {
state: WireguardHandle { inner: wg },
runner: Runner::new(TIMERS_TICK, TIMERS_SLOTS, TIMERS_CAPACITY),
}
}
}