Remove unused test code.
- make naming consistent with the kernel module. - better distribution of functionality from src/wireguard.rs - more consistent "import pattern" throughout the project. - remove unused test code.
This commit is contained in:
@@ -288,13 +288,15 @@ impl<T: tun::Tun, B: udp::PlatformUDP> Configuration for WireguardConfig<T, B> {
|
||||
|
||||
fn set_fwmark(&self, mark: Option<u32>) -> Result<(), ConfigError> {
|
||||
log::trace!("Config, Set fwmark: {:?}", mark);
|
||||
|
||||
match self.lock().bind.as_mut() {
|
||||
Some(bind) => {
|
||||
bind.set_fwmark(mark).unwrap(); // TODO: handle
|
||||
if bind.set_fwmark(mark).is_err() {
|
||||
Err(ConfigError::IOError)
|
||||
} else {
|
||||
Ok(())
|
||||
}
|
||||
None => Err(ConfigError::NotListening),
|
||||
}
|
||||
None => Ok(()),
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -1,9 +1,11 @@
|
||||
use std::error::Error;
|
||||
use std::fmt;
|
||||
|
||||
#[cfg(unix)]
|
||||
use libc::*;
|
||||
|
||||
#[derive(Debug)]
|
||||
pub enum ConfigError {
|
||||
NotListening,
|
||||
FailedToBind,
|
||||
InvalidHexValue,
|
||||
InvalidPortNumber,
|
||||
@@ -35,24 +37,31 @@ impl Error for ConfigError {
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(unix)]
|
||||
impl ConfigError {
|
||||
pub fn errno(&self) -> i32 {
|
||||
// TODO: obtain the correct errorno values
|
||||
match self {
|
||||
ConfigError::NotListening => 2,
|
||||
ConfigError::FailedToBind => 3,
|
||||
ConfigError::InvalidHexValue => 4,
|
||||
ConfigError::InvalidPortNumber => 5,
|
||||
ConfigError::InvalidFwmark => 6,
|
||||
ConfigError::InvalidSocketAddr => 10,
|
||||
ConfigError::InvalidKeepaliveInterval => 11,
|
||||
ConfigError::InvalidAllowedIp => 12,
|
||||
ConfigError::InvalidOperation => 15,
|
||||
ConfigError::UnsupportedValue => 7,
|
||||
ConfigError::LineTooLong => 13,
|
||||
ConfigError::InvalidKey => 8,
|
||||
ConfigError::UnsupportedProtocolVersion => 9,
|
||||
ConfigError::IOError => 14,
|
||||
// insufficient perms
|
||||
ConfigError::FailedToBind => EPERM,
|
||||
|
||||
// parsing of value failed
|
||||
ConfigError::InvalidHexValue => EINVAL,
|
||||
ConfigError::InvalidPortNumber => EINVAL,
|
||||
ConfigError::InvalidFwmark => EINVAL,
|
||||
ConfigError::InvalidSocketAddr => EINVAL,
|
||||
ConfigError::InvalidKeepaliveInterval => EINVAL,
|
||||
ConfigError::InvalidAllowedIp => EINVAL,
|
||||
ConfigError::InvalidOperation => EINVAL,
|
||||
ConfigError::UnsupportedValue => EINVAL,
|
||||
|
||||
// other protocol errors
|
||||
ConfigError::LineTooLong => EPROTO,
|
||||
ConfigError::InvalidKey => EPROTO,
|
||||
ConfigError::UnsupportedProtocolVersion => EPROTO,
|
||||
|
||||
// IO
|
||||
ConfigError::IOError => EIO,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -125,11 +125,8 @@ fn main() {
|
||||
wg.add_tun_reader(reader);
|
||||
}
|
||||
|
||||
// obtain handle for waiting
|
||||
let wait = wg.wait();
|
||||
|
||||
// wrap in configuration interface
|
||||
let cfg = configuration::WireguardConfig::new(wg);
|
||||
let cfg = configuration::WireguardConfig::new(wg.clone());
|
||||
|
||||
// start Tun event thread
|
||||
{
|
||||
@@ -187,6 +184,6 @@ fn main() {
|
||||
});
|
||||
|
||||
// block until all tun readers closed
|
||||
wait.wait();
|
||||
wg.wait();
|
||||
profiler_stop();
|
||||
}
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
mod bind;
|
||||
mod udp;
|
||||
mod endpoint;
|
||||
mod tun;
|
||||
|
||||
@@ -8,6 +8,6 @@ mod tun;
|
||||
* the configuration interface and the UAPI parser.
|
||||
*/
|
||||
|
||||
pub use bind::*;
|
||||
pub use endpoint::*;
|
||||
pub use tun::*;
|
||||
pub use udp::*;
|
||||
|
||||
@@ -13,56 +13,11 @@ use std::time::Duration;
|
||||
|
||||
use super::super::tun::*;
|
||||
|
||||
/* This submodule provides pure/dummy implementations of the IO interfaces
|
||||
* for use in unit tests thoughout the project.
|
||||
*/
|
||||
|
||||
/* Error implementation */
|
||||
|
||||
#[derive(Debug)]
|
||||
pub enum BindError {
|
||||
Disconnected,
|
||||
}
|
||||
|
||||
impl Error for BindError {
|
||||
fn description(&self) -> &str {
|
||||
"Generic Bind Error"
|
||||
}
|
||||
|
||||
fn source(&self) -> Option<&(dyn Error + 'static)> {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Display for BindError {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
match self {
|
||||
BindError::Disconnected => write!(f, "PairBind disconnected"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub enum TunError {
|
||||
Disconnected,
|
||||
}
|
||||
|
||||
impl Error for TunError {
|
||||
fn description(&self) -> &str {
|
||||
"Generic Tun Error"
|
||||
}
|
||||
|
||||
fn source(&self) -> Option<&(dyn Error + 'static)> {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Display for TunError {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
write!(f, "Not Possible")
|
||||
}
|
||||
}
|
||||
|
||||
pub struct TunTest {}
|
||||
|
||||
pub struct TunFakeIO {
|
||||
@@ -83,10 +38,44 @@ pub struct TunWriter {
|
||||
tx: Mutex<SyncSender<Vec<u8>>>,
|
||||
}
|
||||
|
||||
impl fmt::Display for TunFakeIO {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
write!(f, "FakeIO({})", self.id)
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Display for TunReader {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
write!(f, "TunReader({})", self.id)
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Display for TunWriter {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
write!(f, "TunWriter({})", self.id)
|
||||
}
|
||||
}
|
||||
|
||||
pub struct TunStatus {
|
||||
first: bool,
|
||||
}
|
||||
|
||||
impl Error for TunError {
|
||||
fn description(&self) -> &str {
|
||||
"Generic Tun Error"
|
||||
}
|
||||
|
||||
fn source(&self) -> Option<&(dyn Error + 'static)> {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Display for TunError {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
write!(f, "Not Possible")
|
||||
}
|
||||
}
|
||||
|
||||
impl Reader for TunReader {
|
||||
type Error = TunError;
|
||||
|
||||
|
||||
@@ -40,29 +40,6 @@ impl fmt::Display for BindError {
|
||||
}
|
||||
}
|
||||
|
||||
/* TUN implementation */
|
||||
|
||||
#[derive(Debug)]
|
||||
pub enum TunError {
|
||||
Disconnected,
|
||||
}
|
||||
|
||||
impl Error for TunError {
|
||||
fn description(&self) -> &str {
|
||||
"Generic Tun Error"
|
||||
}
|
||||
|
||||
fn source(&self) -> Option<&(dyn Error + 'static)> {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Display for TunError {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
write!(f, "Not Possible")
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy)]
|
||||
pub struct VoidBind {}
|
||||
|
||||
@@ -299,7 +299,7 @@ impl LinuxTunStatus {
|
||||
Err(LinuxTunError::Closed)
|
||||
} else {
|
||||
Ok(LinuxTunStatus {
|
||||
events: vec![],
|
||||
events: vec![TunEvent::Up(1500)],
|
||||
index: get_ifindex(&name),
|
||||
fd,
|
||||
name,
|
||||
|
||||
@@ -10,17 +10,48 @@ pub const REKEY_ATTEMPT_TIME: Duration = Duration::from_secs(90);
|
||||
pub const REKEY_TIMEOUT: Duration = Duration::from_secs(5);
|
||||
pub const KEEPALIVE_TIMEOUT: Duration = Duration::from_secs(10);
|
||||
|
||||
pub const MAX_TIMER_HANDSHAKES: usize = 18;
|
||||
pub const MAX_TIMER_HANDSHAKES: usize =
|
||||
(REKEY_ATTEMPT_TIME.as_secs() / REKEY_TIMEOUT.as_secs()) as usize;
|
||||
|
||||
pub const TIMER_MAX_DURATION: Duration = Duration::from_secs(200);
|
||||
pub const TIMERS_TICK: Duration = Duration::from_millis(100);
|
||||
pub const TIMERS_SLOTS: usize = (TIMER_MAX_DURATION.as_micros() / TIMERS_TICK.as_micros()) as usize;
|
||||
pub const TIMERS_CAPACITY: usize = 1024;
|
||||
// Semantics:
|
||||
// Maximum number of buffered handshake requests
|
||||
// (either from outside message or handshake requests triggered locally)
|
||||
pub const MAX_QUEUED_INCOMING_HANDSHAKES: usize = 4096;
|
||||
|
||||
// Semantics:
|
||||
// When the number of queued handshake requests exceeds this number
|
||||
// the device is considered under load and DoS mitigation is triggered.
|
||||
pub const THRESHOLD_UNDER_LOAD: usize = MAX_QUEUED_INCOMING_HANDSHAKES / 8;
|
||||
|
||||
// Semantics:
|
||||
// When a device is detected to go under load,
|
||||
// it will remain under load for at least the following duration.
|
||||
pub const DURATION_UNDER_LOAD: Duration = Duration::from_secs(1);
|
||||
|
||||
// Semantics:
|
||||
// The payload of transport messages are padded to this multiple
|
||||
pub const MESSAGE_PADDING_MULTIPLE: usize = 16;
|
||||
|
||||
// Semantics:
|
||||
// Longest possible duration of any WireGuard timer
|
||||
pub const TIMER_MAX_DURATION: Duration = Duration::from_secs(200);
|
||||
|
||||
// Semantics:
|
||||
// Resolution of the timer-wheel
|
||||
pub const TIMERS_TICK: Duration = Duration::from_millis(100);
|
||||
|
||||
// Semantics:
|
||||
// Resulting number of slots in the wheel
|
||||
pub const TIMERS_SLOTS: usize = (TIMER_MAX_DURATION.as_micros() / TIMERS_TICK.as_micros()) as usize;
|
||||
|
||||
// Performance:
|
||||
// Initial capacity of timer-wheel (grows to accommodate more timers)
|
||||
pub const TIMERS_CAPACITY: usize = 16;
|
||||
|
||||
/* A long duration (compared to the WireGuard time constants),
|
||||
* used in places to avoid Option<Instant> by instead using a long "expired" Instant:
|
||||
* (Instant::now() - TIME_HORIZON)
|
||||
*
|
||||
* Note, this duration need not fit inside the timer wheel.
|
||||
*/
|
||||
pub const TIME_HORIZON: Duration = Duration::from_secs(60 * 60 * 24);
|
||||
pub const TIME_HORIZON: Duration = Duration::from_secs(TIMER_MAX_DURATION.as_secs() * 2);
|
||||
|
||||
@@ -1,17 +1,29 @@
|
||||
/* The wireguard sub-module represents a full, pure, WireGuard implementation:
|
||||
*
|
||||
* The WireGuard device described here does not depend on particular IO implementations
|
||||
* or UAPI, and can be instantiated in unit-tests with the dummy IO implementation.
|
||||
*
|
||||
* The code at this level serves to "glue" the handshake state-machine
|
||||
* and the crypto-key router code together,
|
||||
* e.g. every WireGuard peer consists of a handshake and router peer.
|
||||
*/
|
||||
mod constants;
|
||||
mod timers;
|
||||
mod wireguard;
|
||||
|
||||
mod handshake;
|
||||
mod peer;
|
||||
mod queue;
|
||||
mod router;
|
||||
mod timers;
|
||||
mod types;
|
||||
mod wireguard;
|
||||
mod workers;
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
|
||||
// represents a peer
|
||||
pub use peer::Peer;
|
||||
|
||||
// represents a WireGuard interface
|
||||
pub use wireguard::Wireguard;
|
||||
|
||||
#[cfg(test)]
|
||||
@@ -21,5 +33,4 @@ pub use types::dummy_keypair;
|
||||
use super::platform::dummy;
|
||||
|
||||
use super::platform::{tun, udp, Endpoint};
|
||||
use peer::PeerInner;
|
||||
use types::KeyPair;
|
||||
|
||||
@@ -3,11 +3,14 @@ use super::timers::{Events, Timers};
|
||||
|
||||
use super::tun::Tun;
|
||||
use super::udp::UDP;
|
||||
use super::wireguard::WireguardInner;
|
||||
use super::Wireguard;
|
||||
|
||||
use super::constants::REKEY_TIMEOUT;
|
||||
use super::workers::HandshakeJob;
|
||||
|
||||
use std::fmt;
|
||||
use std::ops::Deref;
|
||||
use std::sync::atomic::{AtomicBool, AtomicU64};
|
||||
use std::sync::atomic::{AtomicBool, AtomicU64, Ordering};
|
||||
use std::sync::Arc;
|
||||
use std::time::{Instant, SystemTime};
|
||||
|
||||
@@ -15,17 +18,12 @@ use spin::{Mutex, RwLock, RwLockReadGuard, RwLockWriteGuard};
|
||||
|
||||
use x25519_dalek::PublicKey;
|
||||
|
||||
pub struct Peer<T: Tun, B: UDP> {
|
||||
pub router: Arc<router::PeerHandle<B::Endpoint, Events<T, B>, T::Writer, B::Writer>>,
|
||||
pub state: Arc<PeerInner<T, B>>,
|
||||
}
|
||||
|
||||
pub struct PeerInner<T: Tun, B: UDP> {
|
||||
// internal id (for logging)
|
||||
pub id: u64,
|
||||
|
||||
// wireguard device state
|
||||
pub wg: Arc<WireguardInner<T, B>>,
|
||||
pub wg: Wireguard<T, B>,
|
||||
|
||||
// handshake state
|
||||
pub walltime_last_handshake: Mutex<Option<SystemTime>>, // walltime for last handshake (for UAPI status)
|
||||
@@ -41,6 +39,11 @@ pub struct PeerInner<T: Tun, B: UDP> {
|
||||
pub timers: RwLock<Timers>,
|
||||
}
|
||||
|
||||
pub struct Peer<T: Tun, B: UDP> {
|
||||
pub router: Arc<router::PeerHandle<B::Endpoint, Events<T, B>, T::Writer, B::Writer>>,
|
||||
pub state: Arc<PeerInner<T, B>>,
|
||||
}
|
||||
|
||||
impl<T: Tun, B: UDP> Clone for Peer<T, B> {
|
||||
fn clone(&self) -> Peer<T, B> {
|
||||
Peer {
|
||||
@@ -51,6 +54,30 @@ impl<T: Tun, B: UDP> Clone for Peer<T, B> {
|
||||
}
|
||||
|
||||
impl<T: Tun, B: UDP> PeerInner<T, B> {
|
||||
/* Queue a handshake request for the parallel workers
|
||||
* (if one does not already exist)
|
||||
*
|
||||
* The function is ratelimited.
|
||||
*/
|
||||
pub fn packet_send_handshake_initiation(&self) {
|
||||
// the function is rate limited
|
||||
|
||||
{
|
||||
let mut lhs = self.last_handshake_sent.lock();
|
||||
if lhs.elapsed() < REKEY_TIMEOUT {
|
||||
return;
|
||||
}
|
||||
*lhs = Instant::now();
|
||||
}
|
||||
|
||||
// create a new handshake job for the peer
|
||||
|
||||
if !self.handshake_queued.swap(true, Ordering::SeqCst) {
|
||||
self.wg.pending.fetch_add(1, Ordering::SeqCst);
|
||||
self.wg.queue.send(HandshakeJob::New(self.pk));
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn timers(&self) -> RwLockReadGuard<Timers> {
|
||||
self.timers.read()
|
||||
|
||||
@@ -127,38 +127,3 @@ impl<T: ToKey> RunQueue<T> {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use std::thread;
|
||||
use std::time::Duration;
|
||||
|
||||
/*
|
||||
#[test]
|
||||
fn test_wait() {
|
||||
let queue: Arc<RunQueue<usize>> = Arc::new(RunQueue::new());
|
||||
|
||||
{
|
||||
let queue = queue.clone();
|
||||
thread::spawn(move || {
|
||||
queue.run(|e| {
|
||||
println!("t0 {}", e);
|
||||
thread::sleep(Duration::from_millis(100));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
{
|
||||
let queue = queue.clone();
|
||||
thread::spawn(move || {
|
||||
queue.run(|e| {
|
||||
println!("t1 {}", e);
|
||||
thread::sleep(Duration::from_millis(100));
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
@@ -105,7 +105,7 @@ mod tests {
|
||||
|
||||
// wait for scheduling
|
||||
fn wait() {
|
||||
thread::sleep(Duration::from_millis(15));
|
||||
thread::sleep(Duration::from_millis(30));
|
||||
}
|
||||
|
||||
fn init() {
|
||||
|
||||
@@ -14,20 +14,6 @@ use x25519_dalek::{PublicKey, StaticSecret};
|
||||
use pnet::packet::ipv4::MutableIpv4Packet;
|
||||
use pnet::packet::ipv6::MutableIpv6Packet;
|
||||
|
||||
pub fn make_packet_src(size: usize, src: IpAddr, id: u64) -> Vec<u8> {
|
||||
match src {
|
||||
IpAddr::V4(_) => make_packet(size, src, "127.0.0.1".parse().unwrap(), id),
|
||||
IpAddr::V6(_) => make_packet(size, src, "::1".parse().unwrap(), id),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn make_packet_dst(size: usize, dst: IpAddr, id: u64) -> Vec<u8> {
|
||||
match dst {
|
||||
IpAddr::V4(_) => make_packet(size, "127.0.0.1".parse().unwrap(), dst, id),
|
||||
IpAddr::V6(_) => make_packet(size, "::1".parse().unwrap(), dst, id),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn make_packet(size: usize, src: IpAddr, dst: IpAddr, id: u64) -> Vec<u8> {
|
||||
// expand pseudo random payload
|
||||
let mut rng: _ = ChaCha8Rng::seed_from_u64(id);
|
||||
@@ -104,7 +90,7 @@ fn test_pure_wireguard() {
|
||||
wg1.add_udp_reader(bind_reader1);
|
||||
wg2.add_udp_reader(bind_reader2);
|
||||
|
||||
// generate (public, pivate) key pairs
|
||||
// generate (public, private) key pairs
|
||||
|
||||
let sk1 = StaticSecret::from([
|
||||
0x3f, 0x69, 0x86, 0xd1, 0xc0, 0xec, 0x25, 0xa0, 0x9c, 0x8e, 0x56, 0xb5, 0x1d, 0xb7, 0x3c,
|
||||
|
||||
@@ -7,10 +7,11 @@ use hjul::{Runner, Timer};
|
||||
use log::debug;
|
||||
|
||||
use super::constants::*;
|
||||
use super::peer::{Peer, PeerInner};
|
||||
use super::router::{message_data_len, Callbacks};
|
||||
use super::tun::Tun;
|
||||
use super::types::KeyPair;
|
||||
use super::{tun, udp};
|
||||
use super::{Peer, PeerInner};
|
||||
use super::udp::UDP;
|
||||
|
||||
pub struct Timers {
|
||||
// only updated during configuration
|
||||
@@ -35,7 +36,7 @@ impl Timers {
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: tun::Tun, B: udp::UDP> PeerInner<T, B> {
|
||||
impl<T: Tun, B: UDP> PeerInner<T, B> {
|
||||
pub fn get_keepalive_interval(&self) -> u64 {
|
||||
self.timers().keepalive_interval
|
||||
}
|
||||
@@ -221,11 +222,7 @@ impl<T: tun::Tun, B: udp::UDP> PeerInner<T, B> {
|
||||
}
|
||||
|
||||
impl Timers {
|
||||
pub fn new<T, B>(runner: &Runner, running: bool, peer: Peer<T, B>) -> Timers
|
||||
where
|
||||
T: tun::Tun,
|
||||
B: udp::UDP,
|
||||
{
|
||||
pub fn new<T: Tun, B: UDP>(runner: &Runner, running: bool, peer: Peer<T, B>) -> Timers {
|
||||
// create a timer instance for the provided peer
|
||||
Timers {
|
||||
enabled: running,
|
||||
@@ -338,7 +335,7 @@ impl Timers {
|
||||
|
||||
pub struct Events<T, B>(PhantomData<(T, B)>);
|
||||
|
||||
impl<T: tun::Tun, B: udp::UDP> Callbacks for Events<T, B> {
|
||||
impl<T: Tun, B: UDP> Callbacks for Events<T, B> {
|
||||
type Opaque = Arc<PeerInner<T, B>>;
|
||||
|
||||
/* Called after the router encrypts a transport message destined for the peer.
|
||||
|
||||
@@ -1,179 +1,122 @@
|
||||
use super::constants::*;
|
||||
use super::handshake;
|
||||
use super::peer::{Peer, PeerInner};
|
||||
use super::router;
|
||||
use super::timers::{Events, Timers};
|
||||
use super::{Peer, PeerInner};
|
||||
|
||||
use super::queue::ParallelQueue;
|
||||
use super::tun;
|
||||
use super::tun::Reader as TunReader;
|
||||
use super::workers::HandshakeJob;
|
||||
|
||||
use super::udp;
|
||||
use super::udp::Reader as UDPReader;
|
||||
use super::udp::Writer as UDPWriter;
|
||||
use super::tun::Tun;
|
||||
use super::udp::UDP;
|
||||
|
||||
use super::Endpoint;
|
||||
|
||||
use hjul::Runner;
|
||||
use super::workers::{handshake_worker, tun_worker, udp_worker};
|
||||
|
||||
use std::fmt;
|
||||
use std::ops::Deref;
|
||||
use std::sync::atomic::{AtomicBool, AtomicU64, AtomicUsize, Ordering};
|
||||
use std::sync::Arc;
|
||||
use std::thread;
|
||||
use std::time::{Duration, Instant};
|
||||
|
||||
// TODO: avoid
|
||||
use std::sync::Condvar;
|
||||
use std::sync::Mutex as StdMutex;
|
||||
use std::thread;
|
||||
use std::time::Instant;
|
||||
|
||||
use std::collections::hash_map::Entry;
|
||||
use std::collections::HashMap;
|
||||
|
||||
use log::debug;
|
||||
use hjul::Runner;
|
||||
use rand::rngs::OsRng;
|
||||
use rand::Rng;
|
||||
use spin::{Mutex, RwLock};
|
||||
|
||||
use byteorder::{ByteOrder, LittleEndian};
|
||||
use x25519_dalek::{PublicKey, StaticSecret};
|
||||
|
||||
const SIZE_HANDSHAKE_QUEUE: usize = 128;
|
||||
const THRESHOLD_UNDER_LOAD: usize = SIZE_HANDSHAKE_QUEUE / 4;
|
||||
const DURATION_UNDER_LOAD: Duration = Duration::from_millis(10_000);
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct WaitHandle(Arc<(StdMutex<usize>, Condvar)>);
|
||||
|
||||
impl WaitHandle {
|
||||
pub fn wait(&self) {
|
||||
let (lock, cvar) = &*self.0;
|
||||
let mut nread = lock.lock().unwrap();
|
||||
while *nread > 0 {
|
||||
nread = cvar.wait(nread).unwrap();
|
||||
}
|
||||
}
|
||||
|
||||
fn new() -> Self {
|
||||
Self(Arc::new((StdMutex::new(0), Condvar::new())))
|
||||
}
|
||||
|
||||
fn decrease(&self) {
|
||||
let (lock, cvar) = &*self.0;
|
||||
let mut nread = lock.lock().unwrap();
|
||||
assert!(*nread > 0);
|
||||
*nread -= 1;
|
||||
cvar.notify_all();
|
||||
}
|
||||
|
||||
fn increase(&self) {
|
||||
let (lock, _) = &*self.0;
|
||||
let mut nread = lock.lock().unwrap();
|
||||
*nread += 1;
|
||||
}
|
||||
}
|
||||
|
||||
pub struct WireguardInner<T: tun::Tun, B: udp::UDP> {
|
||||
pub struct WireguardInner<T: Tun, B: UDP> {
|
||||
// identifier (for logging)
|
||||
id: u32,
|
||||
pub id: u32,
|
||||
|
||||
// timer wheel
|
||||
pub runner: Mutex<Runner>,
|
||||
|
||||
// device enabled
|
||||
enabled: RwLock<bool>,
|
||||
pub enabled: RwLock<bool>,
|
||||
|
||||
// enables waiting for all readers to finish
|
||||
tun_readers: WaitHandle,
|
||||
// number of tun readers
|
||||
pub tun_readers: WaitCounter,
|
||||
|
||||
// current MTU
|
||||
mtu: AtomicUsize,
|
||||
pub mtu: AtomicUsize,
|
||||
|
||||
// outbound writer
|
||||
send: RwLock<Option<B::Writer>>,
|
||||
pub send: RwLock<Option<B::Writer>>,
|
||||
|
||||
// identity and configuration map
|
||||
peers: RwLock<HashMap<[u8; 32], Peer<T, B>>>,
|
||||
pub peers: RwLock<HashMap<[u8; 32], Peer<T, B>>>,
|
||||
|
||||
// cryptokey router
|
||||
router: router::Device<B::Endpoint, Events<T, B>, T::Writer, B::Writer>,
|
||||
pub router: router::Device<B::Endpoint, Events<T, B>, T::Writer, B::Writer>,
|
||||
|
||||
// handshake related state
|
||||
handshake: RwLock<handshake::Device>,
|
||||
under_load: AtomicBool,
|
||||
pending: AtomicUsize, // num of pending handshake packets in queue
|
||||
queue: ParallelQueue<HandshakeJob<B::Endpoint>>,
|
||||
pub handshake: RwLock<handshake::Device>,
|
||||
pub last_under_load: AtomicUsize,
|
||||
pub pending: AtomicUsize, // num of pending handshake packets in queue
|
||||
pub queue: ParallelQueue<HandshakeJob<B::Endpoint>>,
|
||||
}
|
||||
|
||||
impl<T: tun::Tun, B: udp::UDP> PeerInner<T, B> {
|
||||
/* Queue a handshake request for the parallel workers
|
||||
* (if one does not already exist)
|
||||
*
|
||||
* The function is ratelimited.
|
||||
*/
|
||||
pub fn packet_send_handshake_initiation(&self) {
|
||||
// the function is rate limited
|
||||
|
||||
{
|
||||
let mut lhs = self.last_handshake_sent.lock();
|
||||
if lhs.elapsed() < REKEY_TIMEOUT {
|
||||
return;
|
||||
}
|
||||
*lhs = Instant::now();
|
||||
pub struct Wireguard<T: Tun, B: UDP> {
|
||||
inner: Arc<WireguardInner<T, B>>,
|
||||
}
|
||||
|
||||
// create a new handshake job for the peer
|
||||
pub struct WaitCounter(StdMutex<usize>, Condvar);
|
||||
|
||||
if !self.handshake_queued.swap(true, Ordering::SeqCst) {
|
||||
self.wg.pending.fetch_add(1, Ordering::SeqCst);
|
||||
self.wg.queue.send(HandshakeJob::New(self.pk));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub enum HandshakeJob<E> {
|
||||
Message(Vec<u8>, E),
|
||||
New(PublicKey),
|
||||
}
|
||||
|
||||
impl<T: tun::Tun, B: udp::UDP> fmt::Display for WireguardInner<T, B> {
|
||||
impl<T: Tun, B: UDP> fmt::Display for Wireguard<T, B> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
write!(f, "wireguard({:x})", self.id)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: tun::Tun, B: udp::UDP> Deref for Wireguard<T, B> {
|
||||
type Target = Arc<WireguardInner<T, B>>;
|
||||
impl<T: Tun, B: UDP> Deref for Wireguard<T, B> {
|
||||
type Target = WireguardInner<T, B>;
|
||||
fn deref(&self) -> &Self::Target {
|
||||
&self.state
|
||||
&self.inner
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Wireguard<T: tun::Tun, B: udp::UDP> {
|
||||
runner: Runner,
|
||||
state: Arc<WireguardInner<T, B>>,
|
||||
impl<T: Tun, B: UDP> Clone for Wireguard<T, B> {
|
||||
fn clone(&self) -> Self {
|
||||
Wireguard {
|
||||
inner: self.inner.clone(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Returns the padded length of a message:
|
||||
*
|
||||
* # Arguments
|
||||
*
|
||||
* - `size` : Size of unpadded message
|
||||
* - `mtu` : Maximum transmission unit of the device
|
||||
*
|
||||
* # Returns
|
||||
*
|
||||
* The padded length (always less than or equal to the MTU)
|
||||
*/
|
||||
#[inline(always)]
|
||||
const fn padding(size: usize, mtu: usize) -> usize {
|
||||
#[inline(always)]
|
||||
const fn min(a: usize, b: usize) -> usize {
|
||||
let m = (a < b) as usize;
|
||||
a * m + (1 - m) * b
|
||||
impl WaitCounter {
|
||||
pub fn wait(&self) {
|
||||
let mut nread = self.0.lock().unwrap();
|
||||
while *nread > 0 {
|
||||
nread = self.1.wait(nread).unwrap();
|
||||
}
|
||||
let pad = MESSAGE_PADDING_MULTIPLE;
|
||||
min(mtu, size + (pad - size % pad) % pad)
|
||||
}
|
||||
|
||||
impl<T: tun::Tun, B: udp::UDP> Wireguard<T, B> {
|
||||
fn new() -> Self {
|
||||
Self(StdMutex::new(0), Condvar::new())
|
||||
}
|
||||
|
||||
fn decrease(&self) {
|
||||
let mut nread = self.0.lock().unwrap();
|
||||
assert!(*nread > 0);
|
||||
*nread -= 1;
|
||||
if *nread == 0 {
|
||||
self.1.notify_all();
|
||||
}
|
||||
}
|
||||
|
||||
fn increase(&self) {
|
||||
*self.0.lock().unwrap() += 1;
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Tun, B: UDP> Wireguard<T, B> {
|
||||
/// Brings the WireGuard device down.
|
||||
/// Usually called when the associated interface is brought down.
|
||||
///
|
||||
@@ -193,7 +136,7 @@ impl<T: tun::Tun, B: udp::UDP> Wireguard<T, B> {
|
||||
}
|
||||
|
||||
// set mtu
|
||||
self.state.mtu.store(0, Ordering::Relaxed);
|
||||
self.mtu.store(0, Ordering::Relaxed);
|
||||
|
||||
// avoid tranmission from router
|
||||
self.router.down();
|
||||
@@ -213,7 +156,7 @@ impl<T: tun::Tun, B: udp::UDP> Wireguard<T, B> {
|
||||
let mut enabled = self.enabled.write();
|
||||
|
||||
// set mtu
|
||||
self.state.mtu.store(mtu, Ordering::Relaxed);
|
||||
self.mtu.store(mtu, Ordering::Relaxed);
|
||||
|
||||
// check if already up
|
||||
if *enabled {
|
||||
@@ -232,25 +175,21 @@ impl<T: tun::Tun, B: udp::UDP> Wireguard<T, B> {
|
||||
}
|
||||
|
||||
pub fn clear_peers(&self) {
|
||||
self.state.peers.write().clear();
|
||||
self.peers.write().clear();
|
||||
}
|
||||
|
||||
pub fn remove_peer(&self, pk: &PublicKey) {
|
||||
if self.handshake.write().remove(pk).is_ok() {
|
||||
self.state.peers.write().remove(pk.as_bytes());
|
||||
self.peers.write().remove(pk.as_bytes());
|
||||
}
|
||||
}
|
||||
|
||||
pub fn lookup_peer(&self, pk: &PublicKey) -> Option<Peer<T, B>> {
|
||||
self.state
|
||||
.peers
|
||||
.read()
|
||||
.get(pk.as_bytes())
|
||||
.map(|p| p.clone())
|
||||
self.peers.read().get(pk.as_bytes()).map(|p| p.clone())
|
||||
}
|
||||
|
||||
pub fn list_peers(&self) -> Vec<Peer<T, B>> {
|
||||
let peers = self.state.peers.read();
|
||||
let peers = self.peers.read();
|
||||
let mut list = Vec::with_capacity(peers.len());
|
||||
for (k, v) in peers.iter() {
|
||||
debug_assert!(k == v.pk.as_bytes());
|
||||
@@ -274,14 +213,14 @@ impl<T: tun::Tun, B: udp::UDP> Wireguard<T, B> {
|
||||
}
|
||||
|
||||
pub fn set_psk(&self, pk: PublicKey, psk: [u8; 32]) -> bool {
|
||||
self.state.handshake.write().set_psk(pk, psk).is_ok()
|
||||
self.handshake.write().set_psk(pk, psk).is_ok()
|
||||
}
|
||||
pub fn get_psk(&self, pk: &PublicKey) -> Option<[u8; 32]> {
|
||||
self.state.handshake.read().get_psk(pk).ok()
|
||||
self.handshake.read().get_psk(pk).ok()
|
||||
}
|
||||
|
||||
pub fn add_peer(&self, pk: PublicKey) -> bool {
|
||||
if self.state.peers.read().contains_key(pk.as_bytes()) {
|
||||
if self.peers.read().contains_key(pk.as_bytes()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -289,28 +228,28 @@ impl<T: tun::Tun, B: udp::UDP> Wireguard<T, B> {
|
||||
let state = Arc::new(PeerInner {
|
||||
id: rng.gen(),
|
||||
pk,
|
||||
wg: self.state.clone(),
|
||||
wg: self.clone(),
|
||||
walltime_last_handshake: Mutex::new(None),
|
||||
last_handshake_sent: Mutex::new(Instant::now() - TIME_HORIZON),
|
||||
handshake_queued: AtomicBool::new(false),
|
||||
rx_bytes: AtomicU64::new(0),
|
||||
tx_bytes: AtomicU64::new(0),
|
||||
timers: RwLock::new(Timers::dummy(&self.runner)),
|
||||
timers: RwLock::new(Timers::dummy(&*self.runner.lock())),
|
||||
});
|
||||
|
||||
// create a router peer
|
||||
let router = Arc::new(self.state.router.new_peer(state.clone()));
|
||||
let router = Arc::new(self.router.new_peer(state.clone()));
|
||||
|
||||
// form WireGuard peer
|
||||
let peer = Peer { router, state };
|
||||
|
||||
// finally, add the peer to the wireguard device
|
||||
let mut peers = self.state.peers.write();
|
||||
let mut peers = self.peers.write();
|
||||
match peers.entry(*pk.as_bytes()) {
|
||||
Entry::Occupied(_) => false,
|
||||
Entry::Vacant(vacancy) => {
|
||||
// check that the public key does not cause conflict with the private key of the device
|
||||
let ok_pk = self.state.handshake.write().add(pk).is_ok();
|
||||
let ok_pk = self.handshake.write().add(pk).is_ok();
|
||||
if !ok_pk {
|
||||
return false;
|
||||
}
|
||||
@@ -324,7 +263,7 @@ impl<T: tun::Tun, B: udp::UDP> Wireguard<T, B> {
|
||||
* This is in fact the only place where the write lock is ever taken.
|
||||
* TODO: Consider the ease of using atomic pointers instead.
|
||||
*/
|
||||
*peer.timers.write() = Timers::new(&self.runner, *enabled, peer.clone());
|
||||
*peer.timers.write() = Timers::new(&*self.runner.lock(), *enabled, peer.clone());
|
||||
|
||||
// insert into peer map (takes ownership and ensures that the peer is not dropped)
|
||||
vacancy.insert(peer);
|
||||
@@ -339,140 +278,33 @@ impl<T: tun::Tun, B: udp::UDP> Wireguard<T, B> {
|
||||
/// Any previous reader thread is stopped by closing the previous reader,
|
||||
/// which unblocks the thread and causes an error on reader.read
|
||||
pub fn add_udp_reader(&self, reader: B::Reader) {
|
||||
let wg = self.state.clone();
|
||||
let wg = self.clone();
|
||||
thread::spawn(move || {
|
||||
let mut last_under_load =
|
||||
Instant::now() - DURATION_UNDER_LOAD - Duration::from_millis(1000);
|
||||
|
||||
loop {
|
||||
// create vector big enough for any message given current MTU
|
||||
let mtu = wg.mtu.load(Ordering::Relaxed);
|
||||
let size = mtu + handshake::MAX_HANDSHAKE_MSG_SIZE;
|
||||
let mut msg: Vec<u8> = vec![0; size];
|
||||
|
||||
// read UDP packet into vector
|
||||
let (size, src) = match reader.read(&mut msg) {
|
||||
Err(e) => {
|
||||
debug!("Bind reader closed with {}", e);
|
||||
return;
|
||||
}
|
||||
Ok(v) => v,
|
||||
};
|
||||
msg.truncate(size);
|
||||
|
||||
// TODO: start device down
|
||||
if mtu == 0 {
|
||||
continue;
|
||||
}
|
||||
|
||||
// message type de-multiplexer
|
||||
if msg.len() < std::mem::size_of::<u32>() {
|
||||
continue;
|
||||
}
|
||||
match LittleEndian::read_u32(&msg[..]) {
|
||||
handshake::TYPE_COOKIE_REPLY
|
||||
| handshake::TYPE_INITIATION
|
||||
| handshake::TYPE_RESPONSE => {
|
||||
debug!("{} : reader, received handshake message", wg);
|
||||
|
||||
// add one to pending
|
||||
let pending = wg.pending.fetch_add(1, Ordering::SeqCst);
|
||||
|
||||
// update under_load flag
|
||||
if pending > THRESHOLD_UNDER_LOAD {
|
||||
debug!("{} : reader, set under load (pending = {})", wg, pending);
|
||||
last_under_load = Instant::now();
|
||||
wg.under_load.store(true, Ordering::SeqCst);
|
||||
} else if last_under_load.elapsed() > DURATION_UNDER_LOAD {
|
||||
debug!("{} : reader, clear under load", wg);
|
||||
wg.under_load.store(false, Ordering::SeqCst);
|
||||
}
|
||||
|
||||
// add to handshake queue
|
||||
wg.queue.send(HandshakeJob::Message(msg, src));
|
||||
}
|
||||
router::TYPE_TRANSPORT => {
|
||||
debug!("{} : reader, received transport message", wg);
|
||||
|
||||
// transport message
|
||||
let _ = wg.router.recv(src, msg).map_err(|e| {
|
||||
debug!("Failed to handle incoming transport message: {}", e);
|
||||
});
|
||||
}
|
||||
_ => (),
|
||||
}
|
||||
}
|
||||
udp_worker(&wg, reader);
|
||||
});
|
||||
}
|
||||
|
||||
pub fn set_writer(&self, writer: B::Writer) {
|
||||
// TODO: Consider unifying these and avoid Clone requirement on writer
|
||||
*self.state.send.write() = Some(writer.clone());
|
||||
self.state.router.set_outbound_writer(writer);
|
||||
*self.send.write() = Some(writer.clone());
|
||||
self.router.set_outbound_writer(writer);
|
||||
}
|
||||
|
||||
pub fn add_tun_reader(&self, reader: T::Reader) {
|
||||
fn worker<T: tun::Tun, B: udp::UDP>(wg: &Arc<WireguardInner<T, B>>, reader: T::Reader) {
|
||||
loop {
|
||||
// create vector big enough for any transport message (based on MTU)
|
||||
let mtu = wg.mtu.load(Ordering::Relaxed);
|
||||
let size = mtu + router::SIZE_MESSAGE_PREFIX + 1;
|
||||
let mut msg: Vec<u8> = vec![0; size + router::CAPACITY_MESSAGE_POSTFIX];
|
||||
|
||||
// read a new IP packet
|
||||
let payload = match reader.read(&mut msg[..], router::SIZE_MESSAGE_PREFIX) {
|
||||
Ok(payload) => payload,
|
||||
Err(e) => {
|
||||
debug!("TUN worker, failed to read from tun device: {}", e);
|
||||
break;
|
||||
}
|
||||
};
|
||||
debug!("TUN worker, IP packet of {} bytes (MTU = {})", payload, mtu);
|
||||
|
||||
// check if device is down
|
||||
if mtu == 0 {
|
||||
continue;
|
||||
}
|
||||
|
||||
// truncate padding
|
||||
let padded = padding(payload, mtu);
|
||||
log::trace!(
|
||||
"TUN worker, payload length = {}, padded length = {}",
|
||||
payload,
|
||||
padded
|
||||
);
|
||||
msg.truncate(router::SIZE_MESSAGE_PREFIX + padded);
|
||||
debug_assert!(padded <= mtu);
|
||||
debug_assert_eq!(
|
||||
if padded < mtu {
|
||||
(msg.len() - router::SIZE_MESSAGE_PREFIX) % MESSAGE_PADDING_MULTIPLE
|
||||
} else {
|
||||
0
|
||||
},
|
||||
0
|
||||
);
|
||||
|
||||
// crypt-key route
|
||||
let e = wg.router.send(msg);
|
||||
debug!("TUN worker, router returned {:?}", e);
|
||||
}
|
||||
}
|
||||
|
||||
// start a thread for every reader
|
||||
let wg = self.state.clone();
|
||||
let wg = self.clone();
|
||||
|
||||
// increment reader count
|
||||
wg.tun_readers.increase();
|
||||
|
||||
// start worker
|
||||
thread::spawn(move || {
|
||||
worker(&wg, reader);
|
||||
tun_worker(&wg, reader);
|
||||
wg.tun_readers.decrease();
|
||||
});
|
||||
}
|
||||
|
||||
pub fn wait(&self) -> WaitHandle {
|
||||
self.state.tun_readers.clone()
|
||||
pub fn wait(&self) {
|
||||
self.tun_readers.wait();
|
||||
}
|
||||
|
||||
pub fn new(writer: T::Writer) -> Wireguard<T, B> {
|
||||
@@ -482,143 +314,33 @@ impl<T: tun::Tun, B: udp::UDP> Wireguard<T, B> {
|
||||
// create device state
|
||||
let mut rng = OsRng::new().unwrap();
|
||||
|
||||
// handshake queue
|
||||
// create handshake queue
|
||||
let (tx, mut rxs) = ParallelQueue::new(cpus, 128);
|
||||
let wg = Arc::new(WireguardInner {
|
||||
|
||||
// create arc to state
|
||||
let wg = Wireguard {
|
||||
inner: Arc::new(WireguardInner {
|
||||
enabled: RwLock::new(false),
|
||||
tun_readers: WaitHandle::new(),
|
||||
tun_readers: WaitCounter::new(),
|
||||
id: rng.gen(),
|
||||
mtu: AtomicUsize::new(0),
|
||||
peers: RwLock::new(HashMap::new()),
|
||||
last_under_load: AtomicUsize::new(0), // TODO
|
||||
send: RwLock::new(None),
|
||||
router: router::Device::new(num_cpus::get(), writer), // router owns the writing half
|
||||
pending: AtomicUsize::new(0),
|
||||
handshake: RwLock::new(handshake::Device::new()),
|
||||
under_load: AtomicBool::new(false),
|
||||
runner: Mutex::new(Runner::new(TIMERS_TICK, TIMERS_SLOTS, TIMERS_CAPACITY)),
|
||||
queue: tx,
|
||||
});
|
||||
}),
|
||||
};
|
||||
|
||||
// start handshake workers
|
||||
while let Some(rx) = rxs.pop() {
|
||||
let wg = wg.clone();
|
||||
thread::spawn(move || {
|
||||
debug!("{} : handshake worker, started", wg);
|
||||
|
||||
// prepare OsRng instance for this thread
|
||||
let mut rng = OsRng::new().expect("Unable to obtain a CSPRNG");
|
||||
|
||||
// process elements from the handshake queue
|
||||
for job in rx {
|
||||
// decrement pending pakcets (under_load)
|
||||
let job: HandshakeJob<B::Endpoint> = job;
|
||||
wg.pending.fetch_sub(1, Ordering::SeqCst);
|
||||
|
||||
// demultiplex staged handshake jobs and handshake messages
|
||||
match job {
|
||||
HandshakeJob::Message(msg, src) => {
|
||||
// feed message to handshake device
|
||||
let src_validate = (&src).into_address(); // TODO avoid
|
||||
|
||||
// process message
|
||||
let device = wg.handshake.read();
|
||||
match device.process(
|
||||
&mut rng,
|
||||
&msg[..],
|
||||
if wg.under_load.load(Ordering::Relaxed) {
|
||||
debug!("{} : handshake worker, under load", wg);
|
||||
Some(&src_validate)
|
||||
} else {
|
||||
None
|
||||
},
|
||||
) {
|
||||
Ok((pk, resp, keypair)) => {
|
||||
// send response (might be cookie reply or handshake response)
|
||||
let mut resp_len: u64 = 0;
|
||||
if let Some(msg) = resp {
|
||||
resp_len = msg.len() as u64;
|
||||
let send: &Option<B::Writer> = &*wg.send.read();
|
||||
if let Some(writer) = send.as_ref() {
|
||||
debug!(
|
||||
"{} : handshake worker, send response ({} bytes)",
|
||||
wg, resp_len
|
||||
);
|
||||
let _ = writer.write(&msg[..], &src).map_err(|e| {
|
||||
debug!(
|
||||
"{} : handshake worker, failed to send response, error = {}",
|
||||
wg,
|
||||
e
|
||||
)
|
||||
});
|
||||
}
|
||||
thread::spawn(move || handshake_worker(&wg, rx));
|
||||
}
|
||||
|
||||
// update peer state
|
||||
if let Some(pk) = pk {
|
||||
// authenticated handshake packet received
|
||||
if let Some(peer) = wg.peers.read().get(pk.as_bytes()) {
|
||||
// add to rx_bytes and tx_bytes
|
||||
let req_len = msg.len() as u64;
|
||||
peer.rx_bytes.fetch_add(req_len, Ordering::Relaxed);
|
||||
peer.tx_bytes.fetch_add(resp_len, Ordering::Relaxed);
|
||||
|
||||
// update endpoint
|
||||
peer.router.set_endpoint(src);
|
||||
|
||||
if resp_len > 0 {
|
||||
// update timers after sending handshake response
|
||||
debug!("{} : handshake worker, handshake response sent", wg);
|
||||
peer.state.sent_handshake_response();
|
||||
} else {
|
||||
// update timers after receiving handshake response
|
||||
debug!("{} : handshake worker, handshake response was received", wg);
|
||||
peer.state.timers_handshake_complete();
|
||||
}
|
||||
|
||||
// add any new keypair to peer
|
||||
keypair.map(|kp| {
|
||||
debug!(
|
||||
"{} : handshake worker, new keypair for {}",
|
||||
wg, peer
|
||||
);
|
||||
|
||||
// this means that a handshake response was processed or sent
|
||||
peer.timers_session_derived();
|
||||
|
||||
// free any unused ids
|
||||
for id in peer.router.add_keypair(kp) {
|
||||
device.release(id);
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
Err(e) => debug!("{} : handshake worker, error = {:?}", wg, e),
|
||||
}
|
||||
}
|
||||
HandshakeJob::New(pk) => {
|
||||
if let Some(peer) = wg.peers.read().get(pk.as_bytes()) {
|
||||
debug!(
|
||||
"{} : handshake worker, new handshake requested for {}",
|
||||
wg, peer
|
||||
);
|
||||
let device = wg.handshake.read();
|
||||
let _ = device.begin(&mut rng, &peer.pk).map(|msg| {
|
||||
let _ = peer.router.send(&msg[..]).map_err(|e| {
|
||||
debug!("{} : handshake worker, failed to send handshake initiation, error = {}", wg, e)
|
||||
});
|
||||
peer.state.sent_handshake_initiation();
|
||||
});
|
||||
peer.handshake_queued.store(false, Ordering::SeqCst);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
Wireguard {
|
||||
state: wg,
|
||||
runner: Runner::new(TIMERS_TICK, TIMERS_SLOTS, TIMERS_CAPACITY),
|
||||
}
|
||||
wg
|
||||
}
|
||||
}
|
||||
|
||||
280
src/wireguard/workers.rs
Normal file
280
src/wireguard/workers.rs
Normal file
@@ -0,0 +1,280 @@
|
||||
use std::sync::atomic::Ordering;
|
||||
use std::time::Instant;
|
||||
|
||||
use byteorder::{ByteOrder, LittleEndian};
|
||||
use crossbeam_channel::Receiver;
|
||||
use log::debug;
|
||||
use rand::rngs::OsRng;
|
||||
use x25519_dalek::PublicKey;
|
||||
|
||||
// IO traits
|
||||
use super::Endpoint;
|
||||
|
||||
use super::tun::Reader as TunReader;
|
||||
use super::tun::Tun;
|
||||
|
||||
use super::udp::Reader as UDPReader;
|
||||
use super::udp::Writer as UDPWriter;
|
||||
use super::udp::UDP;
|
||||
|
||||
// constants
|
||||
use super::constants::{
|
||||
DURATION_UNDER_LOAD, MESSAGE_PADDING_MULTIPLE, THRESHOLD_UNDER_LOAD, TIME_HORIZON,
|
||||
};
|
||||
use super::handshake::MAX_HANDSHAKE_MSG_SIZE;
|
||||
use super::handshake::{TYPE_COOKIE_REPLY, TYPE_INITIATION, TYPE_RESPONSE};
|
||||
use super::router::{CAPACITY_MESSAGE_POSTFIX, SIZE_MESSAGE_PREFIX, TYPE_TRANSPORT};
|
||||
|
||||
use super::Wireguard;
|
||||
|
||||
pub enum HandshakeJob<E> {
|
||||
Message(Vec<u8>, E),
|
||||
New(PublicKey),
|
||||
}
|
||||
|
||||
/* Returns the padded length of a message:
|
||||
*
|
||||
* # Arguments
|
||||
*
|
||||
* - `size` : Size of unpadded message
|
||||
* - `mtu` : Maximum transmission unit of the device
|
||||
*
|
||||
* # Returns
|
||||
*
|
||||
* The padded length (always less than or equal to the MTU)
|
||||
*/
|
||||
#[inline(always)]
|
||||
const fn padding(size: usize, mtu: usize) -> usize {
|
||||
#[inline(always)]
|
||||
const fn min(a: usize, b: usize) -> usize {
|
||||
let m = (a < b) as usize;
|
||||
a * m + (1 - m) * b
|
||||
}
|
||||
let pad = MESSAGE_PADDING_MULTIPLE;
|
||||
min(mtu, size + (pad - size % pad) % pad)
|
||||
}
|
||||
|
||||
pub fn tun_worker<T: Tun, B: UDP>(wg: &Wireguard<T, B>, reader: T::Reader) {
|
||||
loop {
|
||||
// create vector big enough for any transport message (based on MTU)
|
||||
let mtu = wg.mtu.load(Ordering::Relaxed);
|
||||
let size = mtu + SIZE_MESSAGE_PREFIX + 1;
|
||||
let mut msg: Vec<u8> = vec![0; size + CAPACITY_MESSAGE_POSTFIX];
|
||||
|
||||
// read a new IP packet
|
||||
let payload = match reader.read(&mut msg[..], SIZE_MESSAGE_PREFIX) {
|
||||
Ok(payload) => payload,
|
||||
Err(e) => {
|
||||
debug!("TUN worker, failed to read from tun device: {}", e);
|
||||
break;
|
||||
}
|
||||
};
|
||||
debug!("TUN worker, IP packet of {} bytes (MTU = {})", payload, mtu);
|
||||
|
||||
// check if device is down
|
||||
if mtu == 0 {
|
||||
continue;
|
||||
}
|
||||
|
||||
// truncate padding
|
||||
let padded = padding(payload, mtu);
|
||||
log::trace!(
|
||||
"TUN worker, payload length = {}, padded length = {}",
|
||||
payload,
|
||||
padded
|
||||
);
|
||||
msg.truncate(SIZE_MESSAGE_PREFIX + padded);
|
||||
debug_assert!(padded <= mtu);
|
||||
debug_assert_eq!(
|
||||
if padded < mtu {
|
||||
(msg.len() - SIZE_MESSAGE_PREFIX) % MESSAGE_PADDING_MULTIPLE
|
||||
} else {
|
||||
0
|
||||
},
|
||||
0
|
||||
);
|
||||
|
||||
// crypt-key route
|
||||
let e = wg.router.send(msg);
|
||||
debug!("TUN worker, router returned {:?}", e);
|
||||
}
|
||||
}
|
||||
|
||||
pub fn udp_worker<T: Tun, B: UDP>(wg: &Wireguard<T, B>, reader: B::Reader) {
|
||||
let mut last_under_load = Instant::now() - TIME_HORIZON;
|
||||
|
||||
loop {
|
||||
// create vector big enough for any message given current MTU
|
||||
let mtu = wg.mtu.load(Ordering::Relaxed);
|
||||
let size = mtu + MAX_HANDSHAKE_MSG_SIZE;
|
||||
let mut msg: Vec<u8> = vec![0; size];
|
||||
|
||||
// read UDP packet into vector
|
||||
let (size, src) = match reader.read(&mut msg) {
|
||||
Err(e) => {
|
||||
debug!("Bind reader closed with {}", e);
|
||||
return;
|
||||
}
|
||||
Ok(v) => v,
|
||||
};
|
||||
msg.truncate(size);
|
||||
|
||||
// TODO: start device down
|
||||
if mtu == 0 {
|
||||
continue;
|
||||
}
|
||||
|
||||
// message type de-multiplexer
|
||||
if msg.len() < std::mem::size_of::<u32>() {
|
||||
continue;
|
||||
}
|
||||
match LittleEndian::read_u32(&msg[..]) {
|
||||
TYPE_COOKIE_REPLY | TYPE_INITIATION | TYPE_RESPONSE => {
|
||||
debug!("{} : reader, received handshake message", wg);
|
||||
|
||||
// add one to pending
|
||||
let pending = wg.pending.fetch_add(1, Ordering::SeqCst);
|
||||
|
||||
// update under_load flag
|
||||
if pending > THRESHOLD_UNDER_LOAD {
|
||||
debug!("{} : reader, set under load (pending = {})", wg, pending);
|
||||
last_under_load = Instant::now();
|
||||
} else if last_under_load.elapsed() > DURATION_UNDER_LOAD {
|
||||
debug!("{} : reader, clear under load", wg);
|
||||
}
|
||||
|
||||
// add to handshake queue
|
||||
wg.queue.send(HandshakeJob::Message(msg, src));
|
||||
}
|
||||
TYPE_TRANSPORT => {
|
||||
debug!("{} : reader, received transport message", wg);
|
||||
|
||||
// transport message
|
||||
let _ = wg.router.recv(src, msg).map_err(|e| {
|
||||
debug!("Failed to handle incoming transport message: {}", e);
|
||||
});
|
||||
}
|
||||
_ => (),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn handshake_worker<T: Tun, B: UDP>(
|
||||
wg: &Wireguard<T, B>,
|
||||
rx: Receiver<HandshakeJob<B::Endpoint>>,
|
||||
) {
|
||||
debug!("{} : handshake worker, started", wg);
|
||||
|
||||
// prepare OsRng instance for this thread
|
||||
let mut rng = OsRng::new().expect("Unable to obtain a CSPRNG");
|
||||
|
||||
// process elements from the handshake queue
|
||||
for job in rx {
|
||||
// decrement pending pakcets (under_load)
|
||||
let job: HandshakeJob<B::Endpoint> = job;
|
||||
wg.pending.fetch_sub(1, Ordering::SeqCst);
|
||||
|
||||
// demultiplex staged handshake jobs and handshake messages
|
||||
match job {
|
||||
HandshakeJob::Message(msg, src) => {
|
||||
// feed message to handshake device
|
||||
let src_validate = (&src).into_address(); // TODO avoid
|
||||
|
||||
// process message
|
||||
let device = wg.handshake.read();
|
||||
match device.process(
|
||||
&mut rng,
|
||||
&msg[..],
|
||||
None,
|
||||
/*
|
||||
if wg.under_load.load(Ordering::Relaxed) {
|
||||
debug!("{} : handshake worker, under load", wg);
|
||||
Some(&src_validate)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
*/
|
||||
) {
|
||||
Ok((pk, resp, keypair)) => {
|
||||
// send response (might be cookie reply or handshake response)
|
||||
let mut resp_len: u64 = 0;
|
||||
if let Some(msg) = resp {
|
||||
resp_len = msg.len() as u64;
|
||||
let send: &Option<B::Writer> = &*wg.send.read();
|
||||
if let Some(writer) = send.as_ref() {
|
||||
debug!(
|
||||
"{} : handshake worker, send response ({} bytes)",
|
||||
wg, resp_len
|
||||
);
|
||||
let _ = writer.write(&msg[..], &src).map_err(|e| {
|
||||
debug!(
|
||||
"{} : handshake worker, failed to send response, error = {}",
|
||||
wg,
|
||||
e
|
||||
)
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// update peer state
|
||||
if let Some(pk) = pk {
|
||||
// authenticated handshake packet received
|
||||
if let Some(peer) = wg.peers.read().get(pk.as_bytes()) {
|
||||
// add to rx_bytes and tx_bytes
|
||||
let req_len = msg.len() as u64;
|
||||
peer.rx_bytes.fetch_add(req_len, Ordering::Relaxed);
|
||||
peer.tx_bytes.fetch_add(resp_len, Ordering::Relaxed);
|
||||
|
||||
// update endpoint
|
||||
peer.router.set_endpoint(src);
|
||||
|
||||
if resp_len > 0 {
|
||||
// update timers after sending handshake response
|
||||
debug!("{} : handshake worker, handshake response sent", wg);
|
||||
peer.state.sent_handshake_response();
|
||||
} else {
|
||||
// update timers after receiving handshake response
|
||||
debug!(
|
||||
"{} : handshake worker, handshake response was received",
|
||||
wg
|
||||
);
|
||||
peer.state.timers_handshake_complete();
|
||||
}
|
||||
|
||||
// add any new keypair to peer
|
||||
keypair.map(|kp| {
|
||||
debug!("{} : handshake worker, new keypair for {}", wg, peer);
|
||||
|
||||
// this means that a handshake response was processed or sent
|
||||
peer.timers_session_derived();
|
||||
|
||||
// free any unused ids
|
||||
for id in peer.router.add_keypair(kp) {
|
||||
device.release(id);
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
Err(e) => debug!("{} : handshake worker, error = {:?}", wg, e),
|
||||
}
|
||||
}
|
||||
HandshakeJob::New(pk) => {
|
||||
if let Some(peer) = wg.peers.read().get(pk.as_bytes()) {
|
||||
debug!(
|
||||
"{} : handshake worker, new handshake requested for {}",
|
||||
wg, peer
|
||||
);
|
||||
let device = wg.handshake.read();
|
||||
let _ = device.begin(&mut rng, &peer.pk).map(|msg| {
|
||||
let _ = peer.router.send(&msg[..]).map_err(|e| {
|
||||
debug!("{} : handshake worker, failed to send handshake initiation, error = {}", wg, e)
|
||||
});
|
||||
peer.state.sent_handshake_initiation();
|
||||
});
|
||||
peer.handshake_queued.store(false, Ordering::SeqCst);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user