Remove unused test code.

- make naming consistent with the kernel module.
- better distribution of functionality from src/wireguard.rs
- more consistent "import pattern" throughout the project.
- remove unused test code.
This commit is contained in:
Mathias Hall-Andersen
2019-12-21 00:17:31 +01:00
parent f8f404c871
commit aabefa5043
16 changed files with 551 additions and 558 deletions

View File

@@ -288,13 +288,15 @@ impl<T: tun::Tun, B: udp::PlatformUDP> Configuration for WireguardConfig<T, B> {
fn set_fwmark(&self, mark: Option<u32>) -> Result<(), ConfigError> {
log::trace!("Config, Set fwmark: {:?}", mark);
match self.lock().bind.as_mut() {
Some(bind) => {
bind.set_fwmark(mark).unwrap(); // TODO: handle
Ok(())
if bind.set_fwmark(mark).is_err() {
Err(ConfigError::IOError)
} else {
Ok(())
}
}
None => Err(ConfigError::NotListening),
None => Ok(()),
}
}

View File

@@ -1,9 +1,11 @@
use std::error::Error;
use std::fmt;
#[cfg(unix)]
use libc::*;
#[derive(Debug)]
pub enum ConfigError {
NotListening,
FailedToBind,
InvalidHexValue,
InvalidPortNumber,
@@ -35,24 +37,31 @@ impl Error for ConfigError {
}
}
#[cfg(unix)]
impl ConfigError {
pub fn errno(&self) -> i32 {
// TODO: obtain the correct errorno values
match self {
ConfigError::NotListening => 2,
ConfigError::FailedToBind => 3,
ConfigError::InvalidHexValue => 4,
ConfigError::InvalidPortNumber => 5,
ConfigError::InvalidFwmark => 6,
ConfigError::InvalidSocketAddr => 10,
ConfigError::InvalidKeepaliveInterval => 11,
ConfigError::InvalidAllowedIp => 12,
ConfigError::InvalidOperation => 15,
ConfigError::UnsupportedValue => 7,
ConfigError::LineTooLong => 13,
ConfigError::InvalidKey => 8,
ConfigError::UnsupportedProtocolVersion => 9,
ConfigError::IOError => 14,
// insufficient perms
ConfigError::FailedToBind => EPERM,
// parsing of value failed
ConfigError::InvalidHexValue => EINVAL,
ConfigError::InvalidPortNumber => EINVAL,
ConfigError::InvalidFwmark => EINVAL,
ConfigError::InvalidSocketAddr => EINVAL,
ConfigError::InvalidKeepaliveInterval => EINVAL,
ConfigError::InvalidAllowedIp => EINVAL,
ConfigError::InvalidOperation => EINVAL,
ConfigError::UnsupportedValue => EINVAL,
// other protocol errors
ConfigError::LineTooLong => EPROTO,
ConfigError::InvalidKey => EPROTO,
ConfigError::UnsupportedProtocolVersion => EPROTO,
// IO
ConfigError::IOError => EIO,
}
}
}

View File

@@ -125,11 +125,8 @@ fn main() {
wg.add_tun_reader(reader);
}
// obtain handle for waiting
let wait = wg.wait();
// wrap in configuration interface
let cfg = configuration::WireguardConfig::new(wg);
let cfg = configuration::WireguardConfig::new(wg.clone());
// start Tun event thread
{
@@ -187,6 +184,6 @@ fn main() {
});
// block until all tun readers closed
wait.wait();
wg.wait();
profiler_stop();
}

View File

@@ -1,4 +1,4 @@
mod bind;
mod udp;
mod endpoint;
mod tun;
@@ -8,6 +8,6 @@ mod tun;
* the configuration interface and the UAPI parser.
*/
pub use bind::*;
pub use endpoint::*;
pub use tun::*;
pub use udp::*;

View File

@@ -13,56 +13,11 @@ use std::time::Duration;
use super::super::tun::*;
/* This submodule provides pure/dummy implementations of the IO interfaces
* for use in unit tests thoughout the project.
*/
/* Error implementation */
#[derive(Debug)]
pub enum BindError {
Disconnected,
}
impl Error for BindError {
fn description(&self) -> &str {
"Generic Bind Error"
}
fn source(&self) -> Option<&(dyn Error + 'static)> {
None
}
}
impl fmt::Display for BindError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
BindError::Disconnected => write!(f, "PairBind disconnected"),
}
}
}
#[derive(Debug)]
pub enum TunError {
Disconnected,
}
impl Error for TunError {
fn description(&self) -> &str {
"Generic Tun Error"
}
fn source(&self) -> Option<&(dyn Error + 'static)> {
None
}
}
impl fmt::Display for TunError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "Not Possible")
}
}
pub struct TunTest {}
pub struct TunFakeIO {
@@ -83,10 +38,44 @@ pub struct TunWriter {
tx: Mutex<SyncSender<Vec<u8>>>,
}
impl fmt::Display for TunFakeIO {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "FakeIO({})", self.id)
}
}
impl fmt::Display for TunReader {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "TunReader({})", self.id)
}
}
impl fmt::Display for TunWriter {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "TunWriter({})", self.id)
}
}
pub struct TunStatus {
first: bool,
}
impl Error for TunError {
fn description(&self) -> &str {
"Generic Tun Error"
}
fn source(&self) -> Option<&(dyn Error + 'static)> {
None
}
}
impl fmt::Display for TunError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "Not Possible")
}
}
impl Reader for TunReader {
type Error = TunError;

View File

@@ -40,29 +40,6 @@ impl fmt::Display for BindError {
}
}
/* TUN implementation */
#[derive(Debug)]
pub enum TunError {
Disconnected,
}
impl Error for TunError {
fn description(&self) -> &str {
"Generic Tun Error"
}
fn source(&self) -> Option<&(dyn Error + 'static)> {
None
}
}
impl fmt::Display for TunError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "Not Possible")
}
}
#[derive(Clone, Copy)]
pub struct VoidBind {}

View File

@@ -299,7 +299,7 @@ impl LinuxTunStatus {
Err(LinuxTunError::Closed)
} else {
Ok(LinuxTunStatus {
events: vec![],
events: vec![TunEvent::Up(1500)],
index: get_ifindex(&name),
fd,
name,

View File

@@ -10,17 +10,48 @@ pub const REKEY_ATTEMPT_TIME: Duration = Duration::from_secs(90);
pub const REKEY_TIMEOUT: Duration = Duration::from_secs(5);
pub const KEEPALIVE_TIMEOUT: Duration = Duration::from_secs(10);
pub const MAX_TIMER_HANDSHAKES: usize = 18;
pub const MAX_TIMER_HANDSHAKES: usize =
(REKEY_ATTEMPT_TIME.as_secs() / REKEY_TIMEOUT.as_secs()) as usize;
pub const TIMER_MAX_DURATION: Duration = Duration::from_secs(200);
pub const TIMERS_TICK: Duration = Duration::from_millis(100);
pub const TIMERS_SLOTS: usize = (TIMER_MAX_DURATION.as_micros() / TIMERS_TICK.as_micros()) as usize;
pub const TIMERS_CAPACITY: usize = 1024;
// Semantics:
// Maximum number of buffered handshake requests
// (either from outside message or handshake requests triggered locally)
pub const MAX_QUEUED_INCOMING_HANDSHAKES: usize = 4096;
// Semantics:
// When the number of queued handshake requests exceeds this number
// the device is considered under load and DoS mitigation is triggered.
pub const THRESHOLD_UNDER_LOAD: usize = MAX_QUEUED_INCOMING_HANDSHAKES / 8;
// Semantics:
// When a device is detected to go under load,
// it will remain under load for at least the following duration.
pub const DURATION_UNDER_LOAD: Duration = Duration::from_secs(1);
// Semantics:
// The payload of transport messages are padded to this multiple
pub const MESSAGE_PADDING_MULTIPLE: usize = 16;
// Semantics:
// Longest possible duration of any WireGuard timer
pub const TIMER_MAX_DURATION: Duration = Duration::from_secs(200);
// Semantics:
// Resolution of the timer-wheel
pub const TIMERS_TICK: Duration = Duration::from_millis(100);
// Semantics:
// Resulting number of slots in the wheel
pub const TIMERS_SLOTS: usize = (TIMER_MAX_DURATION.as_micros() / TIMERS_TICK.as_micros()) as usize;
// Performance:
// Initial capacity of timer-wheel (grows to accommodate more timers)
pub const TIMERS_CAPACITY: usize = 16;
/* A long duration (compared to the WireGuard time constants),
* used in places to avoid Option<Instant> by instead using a long "expired" Instant:
* (Instant::now() - TIME_HORIZON)
*
* Note, this duration need not fit inside the timer wheel.
*/
pub const TIME_HORIZON: Duration = Duration::from_secs(60 * 60 * 24);
pub const TIME_HORIZON: Duration = Duration::from_secs(TIMER_MAX_DURATION.as_secs() * 2);

View File

@@ -1,17 +1,29 @@
/* The wireguard sub-module represents a full, pure, WireGuard implementation:
*
* The WireGuard device described here does not depend on particular IO implementations
* or UAPI, and can be instantiated in unit-tests with the dummy IO implementation.
*
* The code at this level serves to "glue" the handshake state-machine
* and the crypto-key router code together,
* e.g. every WireGuard peer consists of a handshake and router peer.
*/
mod constants;
mod timers;
mod wireguard;
mod handshake;
mod peer;
mod queue;
mod router;
mod timers;
mod types;
mod wireguard;
mod workers;
#[cfg(test)]
mod tests;
// represents a peer
pub use peer::Peer;
// represents a WireGuard interface
pub use wireguard::Wireguard;
#[cfg(test)]
@@ -21,5 +33,4 @@ pub use types::dummy_keypair;
use super::platform::dummy;
use super::platform::{tun, udp, Endpoint};
use peer::PeerInner;
use types::KeyPair;

View File

@@ -3,11 +3,14 @@ use super::timers::{Events, Timers};
use super::tun::Tun;
use super::udp::UDP;
use super::wireguard::WireguardInner;
use super::Wireguard;
use super::constants::REKEY_TIMEOUT;
use super::workers::HandshakeJob;
use std::fmt;
use std::ops::Deref;
use std::sync::atomic::{AtomicBool, AtomicU64};
use std::sync::atomic::{AtomicBool, AtomicU64, Ordering};
use std::sync::Arc;
use std::time::{Instant, SystemTime};
@@ -15,17 +18,12 @@ use spin::{Mutex, RwLock, RwLockReadGuard, RwLockWriteGuard};
use x25519_dalek::PublicKey;
pub struct Peer<T: Tun, B: UDP> {
pub router: Arc<router::PeerHandle<B::Endpoint, Events<T, B>, T::Writer, B::Writer>>,
pub state: Arc<PeerInner<T, B>>,
}
pub struct PeerInner<T: Tun, B: UDP> {
// internal id (for logging)
pub id: u64,
// wireguard device state
pub wg: Arc<WireguardInner<T, B>>,
pub wg: Wireguard<T, B>,
// handshake state
pub walltime_last_handshake: Mutex<Option<SystemTime>>, // walltime for last handshake (for UAPI status)
@@ -41,6 +39,11 @@ pub struct PeerInner<T: Tun, B: UDP> {
pub timers: RwLock<Timers>,
}
pub struct Peer<T: Tun, B: UDP> {
pub router: Arc<router::PeerHandle<B::Endpoint, Events<T, B>, T::Writer, B::Writer>>,
pub state: Arc<PeerInner<T, B>>,
}
impl<T: Tun, B: UDP> Clone for Peer<T, B> {
fn clone(&self) -> Peer<T, B> {
Peer {
@@ -51,6 +54,30 @@ impl<T: Tun, B: UDP> Clone for Peer<T, B> {
}
impl<T: Tun, B: UDP> PeerInner<T, B> {
/* Queue a handshake request for the parallel workers
* (if one does not already exist)
*
* The function is ratelimited.
*/
pub fn packet_send_handshake_initiation(&self) {
// the function is rate limited
{
let mut lhs = self.last_handshake_sent.lock();
if lhs.elapsed() < REKEY_TIMEOUT {
return;
}
*lhs = Instant::now();
}
// create a new handshake job for the peer
if !self.handshake_queued.swap(true, Ordering::SeqCst) {
self.wg.pending.fetch_add(1, Ordering::SeqCst);
self.wg.queue.send(HandshakeJob::New(self.pk));
}
}
#[inline(always)]
pub fn timers(&self) -> RwLockReadGuard<Timers> {
self.timers.read()

View File

@@ -127,38 +127,3 @@ impl<T: ToKey> RunQueue<T> {
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::thread;
use std::time::Duration;
/*
#[test]
fn test_wait() {
let queue: Arc<RunQueue<usize>> = Arc::new(RunQueue::new());
{
let queue = queue.clone();
thread::spawn(move || {
queue.run(|e| {
println!("t0 {}", e);
thread::sleep(Duration::from_millis(100));
})
});
}
{
let queue = queue.clone();
thread::spawn(move || {
queue.run(|e| {
println!("t1 {}", e);
thread::sleep(Duration::from_millis(100));
})
});
}
}
*/
}

View File

@@ -105,7 +105,7 @@ mod tests {
// wait for scheduling
fn wait() {
thread::sleep(Duration::from_millis(15));
thread::sleep(Duration::from_millis(30));
}
fn init() {

View File

@@ -14,20 +14,6 @@ use x25519_dalek::{PublicKey, StaticSecret};
use pnet::packet::ipv4::MutableIpv4Packet;
use pnet::packet::ipv6::MutableIpv6Packet;
pub fn make_packet_src(size: usize, src: IpAddr, id: u64) -> Vec<u8> {
match src {
IpAddr::V4(_) => make_packet(size, src, "127.0.0.1".parse().unwrap(), id),
IpAddr::V6(_) => make_packet(size, src, "::1".parse().unwrap(), id),
}
}
pub fn make_packet_dst(size: usize, dst: IpAddr, id: u64) -> Vec<u8> {
match dst {
IpAddr::V4(_) => make_packet(size, "127.0.0.1".parse().unwrap(), dst, id),
IpAddr::V6(_) => make_packet(size, "::1".parse().unwrap(), dst, id),
}
}
pub fn make_packet(size: usize, src: IpAddr, dst: IpAddr, id: u64) -> Vec<u8> {
// expand pseudo random payload
let mut rng: _ = ChaCha8Rng::seed_from_u64(id);
@@ -104,7 +90,7 @@ fn test_pure_wireguard() {
wg1.add_udp_reader(bind_reader1);
wg2.add_udp_reader(bind_reader2);
// generate (public, pivate) key pairs
// generate (public, private) key pairs
let sk1 = StaticSecret::from([
0x3f, 0x69, 0x86, 0xd1, 0xc0, 0xec, 0x25, 0xa0, 0x9c, 0x8e, 0x56, 0xb5, 0x1d, 0xb7, 0x3c,

View File

@@ -7,10 +7,11 @@ use hjul::{Runner, Timer};
use log::debug;
use super::constants::*;
use super::peer::{Peer, PeerInner};
use super::router::{message_data_len, Callbacks};
use super::tun::Tun;
use super::types::KeyPair;
use super::{tun, udp};
use super::{Peer, PeerInner};
use super::udp::UDP;
pub struct Timers {
// only updated during configuration
@@ -35,7 +36,7 @@ impl Timers {
}
}
impl<T: tun::Tun, B: udp::UDP> PeerInner<T, B> {
impl<T: Tun, B: UDP> PeerInner<T, B> {
pub fn get_keepalive_interval(&self) -> u64 {
self.timers().keepalive_interval
}
@@ -221,11 +222,7 @@ impl<T: tun::Tun, B: udp::UDP> PeerInner<T, B> {
}
impl Timers {
pub fn new<T, B>(runner: &Runner, running: bool, peer: Peer<T, B>) -> Timers
where
T: tun::Tun,
B: udp::UDP,
{
pub fn new<T: Tun, B: UDP>(runner: &Runner, running: bool, peer: Peer<T, B>) -> Timers {
// create a timer instance for the provided peer
Timers {
enabled: running,
@@ -338,7 +335,7 @@ impl Timers {
pub struct Events<T, B>(PhantomData<(T, B)>);
impl<T: tun::Tun, B: udp::UDP> Callbacks for Events<T, B> {
impl<T: Tun, B: UDP> Callbacks for Events<T, B> {
type Opaque = Arc<PeerInner<T, B>>;
/* Called after the router encrypts a transport message destined for the peer.

View File

@@ -1,179 +1,122 @@
use super::constants::*;
use super::handshake;
use super::peer::{Peer, PeerInner};
use super::router;
use super::timers::{Events, Timers};
use super::{Peer, PeerInner};
use super::queue::ParallelQueue;
use super::tun;
use super::tun::Reader as TunReader;
use super::workers::HandshakeJob;
use super::udp;
use super::udp::Reader as UDPReader;
use super::udp::Writer as UDPWriter;
use super::tun::Tun;
use super::udp::UDP;
use super::Endpoint;
use hjul::Runner;
use super::workers::{handshake_worker, tun_worker, udp_worker};
use std::fmt;
use std::ops::Deref;
use std::sync::atomic::{AtomicBool, AtomicU64, AtomicUsize, Ordering};
use std::sync::Arc;
use std::thread;
use std::time::{Duration, Instant};
// TODO: avoid
use std::sync::Condvar;
use std::sync::Mutex as StdMutex;
use std::thread;
use std::time::Instant;
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use log::debug;
use hjul::Runner;
use rand::rngs::OsRng;
use rand::Rng;
use spin::{Mutex, RwLock};
use byteorder::{ByteOrder, LittleEndian};
use x25519_dalek::{PublicKey, StaticSecret};
const SIZE_HANDSHAKE_QUEUE: usize = 128;
const THRESHOLD_UNDER_LOAD: usize = SIZE_HANDSHAKE_QUEUE / 4;
const DURATION_UNDER_LOAD: Duration = Duration::from_millis(10_000);
#[derive(Clone)]
pub struct WaitHandle(Arc<(StdMutex<usize>, Condvar)>);
impl WaitHandle {
pub fn wait(&self) {
let (lock, cvar) = &*self.0;
let mut nread = lock.lock().unwrap();
while *nread > 0 {
nread = cvar.wait(nread).unwrap();
}
}
fn new() -> Self {
Self(Arc::new((StdMutex::new(0), Condvar::new())))
}
fn decrease(&self) {
let (lock, cvar) = &*self.0;
let mut nread = lock.lock().unwrap();
assert!(*nread > 0);
*nread -= 1;
cvar.notify_all();
}
fn increase(&self) {
let (lock, _) = &*self.0;
let mut nread = lock.lock().unwrap();
*nread += 1;
}
}
pub struct WireguardInner<T: tun::Tun, B: udp::UDP> {
pub struct WireguardInner<T: Tun, B: UDP> {
// identifier (for logging)
id: u32,
pub id: u32,
// timer wheel
pub runner: Mutex<Runner>,
// device enabled
enabled: RwLock<bool>,
pub enabled: RwLock<bool>,
// enables waiting for all readers to finish
tun_readers: WaitHandle,
// number of tun readers
pub tun_readers: WaitCounter,
// current MTU
mtu: AtomicUsize,
pub mtu: AtomicUsize,
// outbound writer
send: RwLock<Option<B::Writer>>,
pub send: RwLock<Option<B::Writer>>,
// identity and configuration map
peers: RwLock<HashMap<[u8; 32], Peer<T, B>>>,
pub peers: RwLock<HashMap<[u8; 32], Peer<T, B>>>,
// cryptokey router
router: router::Device<B::Endpoint, Events<T, B>, T::Writer, B::Writer>,
pub router: router::Device<B::Endpoint, Events<T, B>, T::Writer, B::Writer>,
// handshake related state
handshake: RwLock<handshake::Device>,
under_load: AtomicBool,
pending: AtomicUsize, // num of pending handshake packets in queue
queue: ParallelQueue<HandshakeJob<B::Endpoint>>,
pub handshake: RwLock<handshake::Device>,
pub last_under_load: AtomicUsize,
pub pending: AtomicUsize, // num of pending handshake packets in queue
pub queue: ParallelQueue<HandshakeJob<B::Endpoint>>,
}
impl<T: tun::Tun, B: udp::UDP> PeerInner<T, B> {
/* Queue a handshake request for the parallel workers
* (if one does not already exist)
*
* The function is ratelimited.
*/
pub fn packet_send_handshake_initiation(&self) {
// the function is rate limited
{
let mut lhs = self.last_handshake_sent.lock();
if lhs.elapsed() < REKEY_TIMEOUT {
return;
}
*lhs = Instant::now();
}
// create a new handshake job for the peer
if !self.handshake_queued.swap(true, Ordering::SeqCst) {
self.wg.pending.fetch_add(1, Ordering::SeqCst);
self.wg.queue.send(HandshakeJob::New(self.pk));
}
}
pub struct Wireguard<T: Tun, B: UDP> {
inner: Arc<WireguardInner<T, B>>,
}
pub enum HandshakeJob<E> {
Message(Vec<u8>, E),
New(PublicKey),
}
pub struct WaitCounter(StdMutex<usize>, Condvar);
impl<T: tun::Tun, B: udp::UDP> fmt::Display for WireguardInner<T, B> {
impl<T: Tun, B: UDP> fmt::Display for Wireguard<T, B> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "wireguard({:x})", self.id)
}
}
impl<T: tun::Tun, B: udp::UDP> Deref for Wireguard<T, B> {
type Target = Arc<WireguardInner<T, B>>;
impl<T: Tun, B: UDP> Deref for Wireguard<T, B> {
type Target = WireguardInner<T, B>;
fn deref(&self) -> &Self::Target {
&self.state
&self.inner
}
}
pub struct Wireguard<T: tun::Tun, B: udp::UDP> {
runner: Runner,
state: Arc<WireguardInner<T, B>>,
}
/* Returns the padded length of a message:
*
* # Arguments
*
* - `size` : Size of unpadded message
* - `mtu` : Maximum transmission unit of the device
*
* # Returns
*
* The padded length (always less than or equal to the MTU)
*/
#[inline(always)]
const fn padding(size: usize, mtu: usize) -> usize {
#[inline(always)]
const fn min(a: usize, b: usize) -> usize {
let m = (a < b) as usize;
a * m + (1 - m) * b
impl<T: Tun, B: UDP> Clone for Wireguard<T, B> {
fn clone(&self) -> Self {
Wireguard {
inner: self.inner.clone(),
}
}
let pad = MESSAGE_PADDING_MULTIPLE;
min(mtu, size + (pad - size % pad) % pad)
}
impl<T: tun::Tun, B: udp::UDP> Wireguard<T, B> {
impl WaitCounter {
pub fn wait(&self) {
let mut nread = self.0.lock().unwrap();
while *nread > 0 {
nread = self.1.wait(nread).unwrap();
}
}
fn new() -> Self {
Self(StdMutex::new(0), Condvar::new())
}
fn decrease(&self) {
let mut nread = self.0.lock().unwrap();
assert!(*nread > 0);
*nread -= 1;
if *nread == 0 {
self.1.notify_all();
}
}
fn increase(&self) {
*self.0.lock().unwrap() += 1;
}
}
impl<T: Tun, B: UDP> Wireguard<T, B> {
/// Brings the WireGuard device down.
/// Usually called when the associated interface is brought down.
///
@@ -193,7 +136,7 @@ impl<T: tun::Tun, B: udp::UDP> Wireguard<T, B> {
}
// set mtu
self.state.mtu.store(0, Ordering::Relaxed);
self.mtu.store(0, Ordering::Relaxed);
// avoid tranmission from router
self.router.down();
@@ -213,7 +156,7 @@ impl<T: tun::Tun, B: udp::UDP> Wireguard<T, B> {
let mut enabled = self.enabled.write();
// set mtu
self.state.mtu.store(mtu, Ordering::Relaxed);
self.mtu.store(mtu, Ordering::Relaxed);
// check if already up
if *enabled {
@@ -232,25 +175,21 @@ impl<T: tun::Tun, B: udp::UDP> Wireguard<T, B> {
}
pub fn clear_peers(&self) {
self.state.peers.write().clear();
self.peers.write().clear();
}
pub fn remove_peer(&self, pk: &PublicKey) {
if self.handshake.write().remove(pk).is_ok() {
self.state.peers.write().remove(pk.as_bytes());
self.peers.write().remove(pk.as_bytes());
}
}
pub fn lookup_peer(&self, pk: &PublicKey) -> Option<Peer<T, B>> {
self.state
.peers
.read()
.get(pk.as_bytes())
.map(|p| p.clone())
self.peers.read().get(pk.as_bytes()).map(|p| p.clone())
}
pub fn list_peers(&self) -> Vec<Peer<T, B>> {
let peers = self.state.peers.read();
let peers = self.peers.read();
let mut list = Vec::with_capacity(peers.len());
for (k, v) in peers.iter() {
debug_assert!(k == v.pk.as_bytes());
@@ -274,14 +213,14 @@ impl<T: tun::Tun, B: udp::UDP> Wireguard<T, B> {
}
pub fn set_psk(&self, pk: PublicKey, psk: [u8; 32]) -> bool {
self.state.handshake.write().set_psk(pk, psk).is_ok()
self.handshake.write().set_psk(pk, psk).is_ok()
}
pub fn get_psk(&self, pk: &PublicKey) -> Option<[u8; 32]> {
self.state.handshake.read().get_psk(pk).ok()
self.handshake.read().get_psk(pk).ok()
}
pub fn add_peer(&self, pk: PublicKey) -> bool {
if self.state.peers.read().contains_key(pk.as_bytes()) {
if self.peers.read().contains_key(pk.as_bytes()) {
return false;
}
@@ -289,28 +228,28 @@ impl<T: tun::Tun, B: udp::UDP> Wireguard<T, B> {
let state = Arc::new(PeerInner {
id: rng.gen(),
pk,
wg: self.state.clone(),
wg: self.clone(),
walltime_last_handshake: Mutex::new(None),
last_handshake_sent: Mutex::new(Instant::now() - TIME_HORIZON),
handshake_queued: AtomicBool::new(false),
rx_bytes: AtomicU64::new(0),
tx_bytes: AtomicU64::new(0),
timers: RwLock::new(Timers::dummy(&self.runner)),
timers: RwLock::new(Timers::dummy(&*self.runner.lock())),
});
// create a router peer
let router = Arc::new(self.state.router.new_peer(state.clone()));
let router = Arc::new(self.router.new_peer(state.clone()));
// form WireGuard peer
let peer = Peer { router, state };
// finally, add the peer to the wireguard device
let mut peers = self.state.peers.write();
let mut peers = self.peers.write();
match peers.entry(*pk.as_bytes()) {
Entry::Occupied(_) => false,
Entry::Vacant(vacancy) => {
// check that the public key does not cause conflict with the private key of the device
let ok_pk = self.state.handshake.write().add(pk).is_ok();
let ok_pk = self.handshake.write().add(pk).is_ok();
if !ok_pk {
return false;
}
@@ -324,7 +263,7 @@ impl<T: tun::Tun, B: udp::UDP> Wireguard<T, B> {
* This is in fact the only place where the write lock is ever taken.
* TODO: Consider the ease of using atomic pointers instead.
*/
*peer.timers.write() = Timers::new(&self.runner, *enabled, peer.clone());
*peer.timers.write() = Timers::new(&*self.runner.lock(), *enabled, peer.clone());
// insert into peer map (takes ownership and ensures that the peer is not dropped)
vacancy.insert(peer);
@@ -339,140 +278,33 @@ impl<T: tun::Tun, B: udp::UDP> Wireguard<T, B> {
/// Any previous reader thread is stopped by closing the previous reader,
/// which unblocks the thread and causes an error on reader.read
pub fn add_udp_reader(&self, reader: B::Reader) {
let wg = self.state.clone();
let wg = self.clone();
thread::spawn(move || {
let mut last_under_load =
Instant::now() - DURATION_UNDER_LOAD - Duration::from_millis(1000);
loop {
// create vector big enough for any message given current MTU
let mtu = wg.mtu.load(Ordering::Relaxed);
let size = mtu + handshake::MAX_HANDSHAKE_MSG_SIZE;
let mut msg: Vec<u8> = vec![0; size];
// read UDP packet into vector
let (size, src) = match reader.read(&mut msg) {
Err(e) => {
debug!("Bind reader closed with {}", e);
return;
}
Ok(v) => v,
};
msg.truncate(size);
// TODO: start device down
if mtu == 0 {
continue;
}
// message type de-multiplexer
if msg.len() < std::mem::size_of::<u32>() {
continue;
}
match LittleEndian::read_u32(&msg[..]) {
handshake::TYPE_COOKIE_REPLY
| handshake::TYPE_INITIATION
| handshake::TYPE_RESPONSE => {
debug!("{} : reader, received handshake message", wg);
// add one to pending
let pending = wg.pending.fetch_add(1, Ordering::SeqCst);
// update under_load flag
if pending > THRESHOLD_UNDER_LOAD {
debug!("{} : reader, set under load (pending = {})", wg, pending);
last_under_load = Instant::now();
wg.under_load.store(true, Ordering::SeqCst);
} else if last_under_load.elapsed() > DURATION_UNDER_LOAD {
debug!("{} : reader, clear under load", wg);
wg.under_load.store(false, Ordering::SeqCst);
}
// add to handshake queue
wg.queue.send(HandshakeJob::Message(msg, src));
}
router::TYPE_TRANSPORT => {
debug!("{} : reader, received transport message", wg);
// transport message
let _ = wg.router.recv(src, msg).map_err(|e| {
debug!("Failed to handle incoming transport message: {}", e);
});
}
_ => (),
}
}
udp_worker(&wg, reader);
});
}
pub fn set_writer(&self, writer: B::Writer) {
// TODO: Consider unifying these and avoid Clone requirement on writer
*self.state.send.write() = Some(writer.clone());
self.state.router.set_outbound_writer(writer);
*self.send.write() = Some(writer.clone());
self.router.set_outbound_writer(writer);
}
pub fn add_tun_reader(&self, reader: T::Reader) {
fn worker<T: tun::Tun, B: udp::UDP>(wg: &Arc<WireguardInner<T, B>>, reader: T::Reader) {
loop {
// create vector big enough for any transport message (based on MTU)
let mtu = wg.mtu.load(Ordering::Relaxed);
let size = mtu + router::SIZE_MESSAGE_PREFIX + 1;
let mut msg: Vec<u8> = vec![0; size + router::CAPACITY_MESSAGE_POSTFIX];
// read a new IP packet
let payload = match reader.read(&mut msg[..], router::SIZE_MESSAGE_PREFIX) {
Ok(payload) => payload,
Err(e) => {
debug!("TUN worker, failed to read from tun device: {}", e);
break;
}
};
debug!("TUN worker, IP packet of {} bytes (MTU = {})", payload, mtu);
// check if device is down
if mtu == 0 {
continue;
}
// truncate padding
let padded = padding(payload, mtu);
log::trace!(
"TUN worker, payload length = {}, padded length = {}",
payload,
padded
);
msg.truncate(router::SIZE_MESSAGE_PREFIX + padded);
debug_assert!(padded <= mtu);
debug_assert_eq!(
if padded < mtu {
(msg.len() - router::SIZE_MESSAGE_PREFIX) % MESSAGE_PADDING_MULTIPLE
} else {
0
},
0
);
// crypt-key route
let e = wg.router.send(msg);
debug!("TUN worker, router returned {:?}", e);
}
}
// start a thread for every reader
let wg = self.state.clone();
let wg = self.clone();
// increment reader count
wg.tun_readers.increase();
// start worker
thread::spawn(move || {
worker(&wg, reader);
tun_worker(&wg, reader);
wg.tun_readers.decrease();
});
}
pub fn wait(&self) -> WaitHandle {
self.state.tun_readers.clone()
pub fn wait(&self) {
self.tun_readers.wait();
}
pub fn new(writer: T::Writer) -> Wireguard<T, B> {
@@ -482,143 +314,33 @@ impl<T: tun::Tun, B: udp::UDP> Wireguard<T, B> {
// create device state
let mut rng = OsRng::new().unwrap();
// handshake queue
// create handshake queue
let (tx, mut rxs) = ParallelQueue::new(cpus, 128);
let wg = Arc::new(WireguardInner {
enabled: RwLock::new(false),
tun_readers: WaitHandle::new(),
id: rng.gen(),
mtu: AtomicUsize::new(0),
peers: RwLock::new(HashMap::new()),
send: RwLock::new(None),
router: router::Device::new(num_cpus::get(), writer), // router owns the writing half
pending: AtomicUsize::new(0),
handshake: RwLock::new(handshake::Device::new()),
under_load: AtomicBool::new(false),
queue: tx,
});
// create arc to state
let wg = Wireguard {
inner: Arc::new(WireguardInner {
enabled: RwLock::new(false),
tun_readers: WaitCounter::new(),
id: rng.gen(),
mtu: AtomicUsize::new(0),
peers: RwLock::new(HashMap::new()),
last_under_load: AtomicUsize::new(0), // TODO
send: RwLock::new(None),
router: router::Device::new(num_cpus::get(), writer), // router owns the writing half
pending: AtomicUsize::new(0),
handshake: RwLock::new(handshake::Device::new()),
runner: Mutex::new(Runner::new(TIMERS_TICK, TIMERS_SLOTS, TIMERS_CAPACITY)),
queue: tx,
}),
};
// start handshake workers
while let Some(rx) = rxs.pop() {
let wg = wg.clone();
thread::spawn(move || {
debug!("{} : handshake worker, started", wg);
// prepare OsRng instance for this thread
let mut rng = OsRng::new().expect("Unable to obtain a CSPRNG");
// process elements from the handshake queue
for job in rx {
// decrement pending pakcets (under_load)
let job: HandshakeJob<B::Endpoint> = job;
wg.pending.fetch_sub(1, Ordering::SeqCst);
// demultiplex staged handshake jobs and handshake messages
match job {
HandshakeJob::Message(msg, src) => {
// feed message to handshake device
let src_validate = (&src).into_address(); // TODO avoid
// process message
let device = wg.handshake.read();
match device.process(
&mut rng,
&msg[..],
if wg.under_load.load(Ordering::Relaxed) {
debug!("{} : handshake worker, under load", wg);
Some(&src_validate)
} else {
None
},
) {
Ok((pk, resp, keypair)) => {
// send response (might be cookie reply or handshake response)
let mut resp_len: u64 = 0;
if let Some(msg) = resp {
resp_len = msg.len() as u64;
let send: &Option<B::Writer> = &*wg.send.read();
if let Some(writer) = send.as_ref() {
debug!(
"{} : handshake worker, send response ({} bytes)",
wg, resp_len
);
let _ = writer.write(&msg[..], &src).map_err(|e| {
debug!(
"{} : handshake worker, failed to send response, error = {}",
wg,
e
)
});
}
}
// update peer state
if let Some(pk) = pk {
// authenticated handshake packet received
if let Some(peer) = wg.peers.read().get(pk.as_bytes()) {
// add to rx_bytes and tx_bytes
let req_len = msg.len() as u64;
peer.rx_bytes.fetch_add(req_len, Ordering::Relaxed);
peer.tx_bytes.fetch_add(resp_len, Ordering::Relaxed);
// update endpoint
peer.router.set_endpoint(src);
if resp_len > 0 {
// update timers after sending handshake response
debug!("{} : handshake worker, handshake response sent", wg);
peer.state.sent_handshake_response();
} else {
// update timers after receiving handshake response
debug!("{} : handshake worker, handshake response was received", wg);
peer.state.timers_handshake_complete();
}
// add any new keypair to peer
keypair.map(|kp| {
debug!(
"{} : handshake worker, new keypair for {}",
wg, peer
);
// this means that a handshake response was processed or sent
peer.timers_session_derived();
// free any unused ids
for id in peer.router.add_keypair(kp) {
device.release(id);
}
});
}
}
}
Err(e) => debug!("{} : handshake worker, error = {:?}", wg, e),
}
}
HandshakeJob::New(pk) => {
if let Some(peer) = wg.peers.read().get(pk.as_bytes()) {
debug!(
"{} : handshake worker, new handshake requested for {}",
wg, peer
);
let device = wg.handshake.read();
let _ = device.begin(&mut rng, &peer.pk).map(|msg| {
let _ = peer.router.send(&msg[..]).map_err(|e| {
debug!("{} : handshake worker, failed to send handshake initiation, error = {}", wg, e)
});
peer.state.sent_handshake_initiation();
});
peer.handshake_queued.store(false, Ordering::SeqCst);
}
}
}
}
});
thread::spawn(move || handshake_worker(&wg, rx));
}
Wireguard {
state: wg,
runner: Runner::new(TIMERS_TICK, TIMERS_SLOTS, TIMERS_CAPACITY),
}
wg
}
}

280
src/wireguard/workers.rs Normal file
View File

@@ -0,0 +1,280 @@
use std::sync::atomic::Ordering;
use std::time::Instant;
use byteorder::{ByteOrder, LittleEndian};
use crossbeam_channel::Receiver;
use log::debug;
use rand::rngs::OsRng;
use x25519_dalek::PublicKey;
// IO traits
use super::Endpoint;
use super::tun::Reader as TunReader;
use super::tun::Tun;
use super::udp::Reader as UDPReader;
use super::udp::Writer as UDPWriter;
use super::udp::UDP;
// constants
use super::constants::{
DURATION_UNDER_LOAD, MESSAGE_PADDING_MULTIPLE, THRESHOLD_UNDER_LOAD, TIME_HORIZON,
};
use super::handshake::MAX_HANDSHAKE_MSG_SIZE;
use super::handshake::{TYPE_COOKIE_REPLY, TYPE_INITIATION, TYPE_RESPONSE};
use super::router::{CAPACITY_MESSAGE_POSTFIX, SIZE_MESSAGE_PREFIX, TYPE_TRANSPORT};
use super::Wireguard;
pub enum HandshakeJob<E> {
Message(Vec<u8>, E),
New(PublicKey),
}
/* Returns the padded length of a message:
*
* # Arguments
*
* - `size` : Size of unpadded message
* - `mtu` : Maximum transmission unit of the device
*
* # Returns
*
* The padded length (always less than or equal to the MTU)
*/
#[inline(always)]
const fn padding(size: usize, mtu: usize) -> usize {
#[inline(always)]
const fn min(a: usize, b: usize) -> usize {
let m = (a < b) as usize;
a * m + (1 - m) * b
}
let pad = MESSAGE_PADDING_MULTIPLE;
min(mtu, size + (pad - size % pad) % pad)
}
pub fn tun_worker<T: Tun, B: UDP>(wg: &Wireguard<T, B>, reader: T::Reader) {
loop {
// create vector big enough for any transport message (based on MTU)
let mtu = wg.mtu.load(Ordering::Relaxed);
let size = mtu + SIZE_MESSAGE_PREFIX + 1;
let mut msg: Vec<u8> = vec![0; size + CAPACITY_MESSAGE_POSTFIX];
// read a new IP packet
let payload = match reader.read(&mut msg[..], SIZE_MESSAGE_PREFIX) {
Ok(payload) => payload,
Err(e) => {
debug!("TUN worker, failed to read from tun device: {}", e);
break;
}
};
debug!("TUN worker, IP packet of {} bytes (MTU = {})", payload, mtu);
// check if device is down
if mtu == 0 {
continue;
}
// truncate padding
let padded = padding(payload, mtu);
log::trace!(
"TUN worker, payload length = {}, padded length = {}",
payload,
padded
);
msg.truncate(SIZE_MESSAGE_PREFIX + padded);
debug_assert!(padded <= mtu);
debug_assert_eq!(
if padded < mtu {
(msg.len() - SIZE_MESSAGE_PREFIX) % MESSAGE_PADDING_MULTIPLE
} else {
0
},
0
);
// crypt-key route
let e = wg.router.send(msg);
debug!("TUN worker, router returned {:?}", e);
}
}
pub fn udp_worker<T: Tun, B: UDP>(wg: &Wireguard<T, B>, reader: B::Reader) {
let mut last_under_load = Instant::now() - TIME_HORIZON;
loop {
// create vector big enough for any message given current MTU
let mtu = wg.mtu.load(Ordering::Relaxed);
let size = mtu + MAX_HANDSHAKE_MSG_SIZE;
let mut msg: Vec<u8> = vec![0; size];
// read UDP packet into vector
let (size, src) = match reader.read(&mut msg) {
Err(e) => {
debug!("Bind reader closed with {}", e);
return;
}
Ok(v) => v,
};
msg.truncate(size);
// TODO: start device down
if mtu == 0 {
continue;
}
// message type de-multiplexer
if msg.len() < std::mem::size_of::<u32>() {
continue;
}
match LittleEndian::read_u32(&msg[..]) {
TYPE_COOKIE_REPLY | TYPE_INITIATION | TYPE_RESPONSE => {
debug!("{} : reader, received handshake message", wg);
// add one to pending
let pending = wg.pending.fetch_add(1, Ordering::SeqCst);
// update under_load flag
if pending > THRESHOLD_UNDER_LOAD {
debug!("{} : reader, set under load (pending = {})", wg, pending);
last_under_load = Instant::now();
} else if last_under_load.elapsed() > DURATION_UNDER_LOAD {
debug!("{} : reader, clear under load", wg);
}
// add to handshake queue
wg.queue.send(HandshakeJob::Message(msg, src));
}
TYPE_TRANSPORT => {
debug!("{} : reader, received transport message", wg);
// transport message
let _ = wg.router.recv(src, msg).map_err(|e| {
debug!("Failed to handle incoming transport message: {}", e);
});
}
_ => (),
}
}
}
pub fn handshake_worker<T: Tun, B: UDP>(
wg: &Wireguard<T, B>,
rx: Receiver<HandshakeJob<B::Endpoint>>,
) {
debug!("{} : handshake worker, started", wg);
// prepare OsRng instance for this thread
let mut rng = OsRng::new().expect("Unable to obtain a CSPRNG");
// process elements from the handshake queue
for job in rx {
// decrement pending pakcets (under_load)
let job: HandshakeJob<B::Endpoint> = job;
wg.pending.fetch_sub(1, Ordering::SeqCst);
// demultiplex staged handshake jobs and handshake messages
match job {
HandshakeJob::Message(msg, src) => {
// feed message to handshake device
let src_validate = (&src).into_address(); // TODO avoid
// process message
let device = wg.handshake.read();
match device.process(
&mut rng,
&msg[..],
None,
/*
if wg.under_load.load(Ordering::Relaxed) {
debug!("{} : handshake worker, under load", wg);
Some(&src_validate)
} else {
None
}
*/
) {
Ok((pk, resp, keypair)) => {
// send response (might be cookie reply or handshake response)
let mut resp_len: u64 = 0;
if let Some(msg) = resp {
resp_len = msg.len() as u64;
let send: &Option<B::Writer> = &*wg.send.read();
if let Some(writer) = send.as_ref() {
debug!(
"{} : handshake worker, send response ({} bytes)",
wg, resp_len
);
let _ = writer.write(&msg[..], &src).map_err(|e| {
debug!(
"{} : handshake worker, failed to send response, error = {}",
wg,
e
)
});
}
}
// update peer state
if let Some(pk) = pk {
// authenticated handshake packet received
if let Some(peer) = wg.peers.read().get(pk.as_bytes()) {
// add to rx_bytes and tx_bytes
let req_len = msg.len() as u64;
peer.rx_bytes.fetch_add(req_len, Ordering::Relaxed);
peer.tx_bytes.fetch_add(resp_len, Ordering::Relaxed);
// update endpoint
peer.router.set_endpoint(src);
if resp_len > 0 {
// update timers after sending handshake response
debug!("{} : handshake worker, handshake response sent", wg);
peer.state.sent_handshake_response();
} else {
// update timers after receiving handshake response
debug!(
"{} : handshake worker, handshake response was received",
wg
);
peer.state.timers_handshake_complete();
}
// add any new keypair to peer
keypair.map(|kp| {
debug!("{} : handshake worker, new keypair for {}", wg, peer);
// this means that a handshake response was processed or sent
peer.timers_session_derived();
// free any unused ids
for id in peer.router.add_keypair(kp) {
device.release(id);
}
});
}
}
}
Err(e) => debug!("{} : handshake worker, error = {:?}", wg, e),
}
}
HandshakeJob::New(pk) => {
if let Some(peer) = wg.peers.read().get(pk.as_bytes()) {
debug!(
"{} : handshake worker, new handshake requested for {}",
wg, peer
);
let device = wg.handshake.read();
let _ = device.begin(&mut rng, &peer.pk).map(|msg| {
let _ = peer.router.send(&msg[..]).map_err(|e| {
debug!("{} : handshake worker, failed to send handshake initiation, error = {}", wg, e)
});
peer.state.sent_handshake_initiation();
});
peer.handshake_queued.store(false, Ordering::SeqCst);
}
}
}
}
}