Files
wireguard-rs/src/wireguard.rs
2019-10-06 13:33:15 +02:00

319 lines
12 KiB
Rust

use crate::constants::*;
use crate::handshake;
use crate::router;
use crate::timers::{Events, Timers};
use crate::types::{Bind, Endpoint, Tun};
use hjul::Runner;
use std::cmp;
use std::ops::Deref;
use std::sync::atomic::{AtomicBool, AtomicU64, AtomicUsize, Ordering};
use std::sync::Arc;
use std::thread;
use std::time::{Duration, Instant};
use std::collections::HashMap;
use log::debug;
use rand::rngs::OsRng;
use spin::{Mutex, RwLock};
use byteorder::{ByteOrder, LittleEndian};
use crossbeam_channel::{bounded, Sender};
use x25519_dalek::{PublicKey, StaticSecret};
const SIZE_HANDSHAKE_QUEUE: usize = 128;
const THRESHOLD_UNDER_LOAD: usize = SIZE_HANDSHAKE_QUEUE / 4;
const DURATION_UNDER_LOAD: Duration = Duration::from_millis(10_000);
#[derive(Clone)]
pub struct Peer<T: Tun, B: Bind> {
pub router: Arc<router::Peer<Events<T, B>, T, B>>,
pub state: Arc<PeerInner<B>>,
}
pub struct PeerInner<B: Bind> {
pub keepalive: AtomicUsize, // keepalive interval
pub rx_bytes: AtomicU64,
pub tx_bytes: AtomicU64,
pub queue: Mutex<Sender<HandshakeJob<B::Endpoint>>>, // handshake queue
pub pk: PublicKey, // DISCUSS: Change layout in handshake module (adopt pattern of router), to avoid this.
pub timers: RwLock<Timers>, //
}
impl<T: Tun, B: Bind> Deref for Peer<T, B> {
type Target = PeerInner<B>;
fn deref(&self) -> &Self::Target {
&self.state
}
}
impl<B: Bind> PeerInner<B> {
pub fn new_handshake(&self) {
self.queue.lock().send(HandshakeJob::New(self.pk)).unwrap();
}
}
struct Handshake {
device: handshake::Device,
active: bool,
}
pub enum HandshakeJob<E> {
Message(Vec<u8>, E),
New(PublicKey),
}
struct WireguardInner<T: Tun, B: Bind> {
// identify and configuration map
peers: RwLock<HashMap<[u8; 32], Peer<T, B>>>,
// cryptkey router
router: router::Device<Events<T, B>, T, B>,
// handshake related state
handshake: RwLock<Handshake>,
under_load: AtomicBool,
pending: AtomicUsize, // num of pending handshake packets in queue
queue: Mutex<Sender<HandshakeJob<B::Endpoint>>>,
// IO
bind: B,
}
pub struct Wireguard<T: Tun, B: Bind> {
runner: Runner,
state: Arc<WireguardInner<T, B>>,
}
#[inline(always)]
const fn padding(size: usize, mtu: usize) -> usize {
#[inline(always)]
const fn min(a: usize, b: usize) -> usize {
let m = (a > b) as usize;
a * m + (1 - m) * b
}
let pad = MESSAGE_PADDING_MULTIPLE;
min(mtu, size + (pad - size % pad) % pad)
}
impl<T: Tun, B: Bind> Wireguard<T, B> {
pub fn set_key(&self, sk: Option<StaticSecret>) {
let mut handshake = self.state.handshake.write();
match sk {
None => {
let mut rng = OsRng::new().unwrap();
handshake.device.set_sk(StaticSecret::new(&mut rng));
handshake.active = false;
}
Some(sk) => {
handshake.device.set_sk(sk);
handshake.active = true;
}
}
}
pub fn new_peer(&self, pk: PublicKey) -> Peer<T, B> {
let state = Arc::new(PeerInner {
pk,
queue: Mutex::new(self.state.queue.lock().clone()),
keepalive: AtomicUsize::new(0),
rx_bytes: AtomicU64::new(0),
tx_bytes: AtomicU64::new(0),
timers: RwLock::new(Timers::dummy(&self.runner)),
});
let router = Arc::new(self.state.router.new_peer(state.clone()));
let peer = Peer { router, state };
/* The need for dummy timers arises from the chicken-egg
* problem of the timer callbacks being able to set timers themselves.
*
* This is in fact the only place where the write lock is ever taken.
*/
*peer.timers.write() = Timers::new(&self.runner, peer.clone());
peer
}
pub fn new(tun: T, bind: B) -> Wireguard<T, B> {
// create device state
let mut rng = OsRng::new().unwrap();
let (tx, rx): (Sender<HandshakeJob<B::Endpoint>>, _) = bounded(SIZE_HANDSHAKE_QUEUE);
let wg = Arc::new(WireguardInner {
peers: RwLock::new(HashMap::new()),
router: router::Device::new(num_cpus::get(), tun.clone(), bind.clone()),
pending: AtomicUsize::new(0),
handshake: RwLock::new(Handshake {
device: handshake::Device::new(StaticSecret::new(&mut rng)),
active: false,
}),
under_load: AtomicBool::new(false),
bind: bind.clone(),
queue: Mutex::new(tx),
});
// start handshake workers
for _ in 0..num_cpus::get() {
let wg = wg.clone();
let rx = rx.clone();
let bind = bind.clone();
thread::spawn(move || {
// prepare OsRng instance for this thread
let mut rng = OsRng::new().unwrap();
// process elements from the handshake queue
for job in rx {
wg.pending.fetch_sub(1, Ordering::SeqCst);
let state = wg.handshake.read();
if !state.active {
continue;
}
match job {
HandshakeJob::Message(msg, src) => {
// feed message to handshake device
let src_validate = (&src).into_address(); // TODO avoid
// process message
match state.device.process(
&mut rng,
&msg[..],
if wg.under_load.load(Ordering::Relaxed) {
Some(&src_validate)
} else {
None
},
) {
Ok((pk, msg, keypair)) => {
// send response
if let Some(msg) = msg {
let _ = bind.send(&msg[..], &src).map_err(|e| {
debug!(
"handshake worker, failed to send response, error = {:?}",
e
)
});
}
// update timers
if let Some(pk) = pk {
if let Some(peer) = wg.peers.read().get(pk.as_bytes()) {
// update endpoint (DISCUSS: right semantics?)
peer.router.set_endpoint(src_validate);
// add keypair to peer and free any unused ids
if let Some(keypair) = keypair {
for id in peer.router.add_keypair(keypair) {
state.device.release(id);
}
}
}
}
}
Err(e) => debug!("handshake worker, error = {:?}", e),
}
}
HandshakeJob::New(pk) => {
let msg = state.device.begin(&mut rng, &pk).unwrap(); // TODO handle
if let Some(peer) = wg.peers.read().get(pk.as_bytes()) {
peer.router.send(&msg[..]);
peer.timers.read().handshake_sent();
}
}
}
}
});
}
// start UDP read IO thread
{
let wg = wg.clone();
let tun = tun.clone();
let bind = bind.clone();
thread::spawn(move || {
let mut last_under_load =
Instant::now() - DURATION_UNDER_LOAD - Duration::from_millis(1000);
loop {
// create vector big enough for any message given current MTU
let size = tun.mtu() + handshake::MAX_HANDSHAKE_MSG_SIZE;
let mut msg: Vec<u8> = Vec::with_capacity(size);
msg.resize(size, 0);
// read UDP packet into vector
let (size, src) = bind.recv(&mut msg).unwrap(); // TODO handle error
msg.truncate(size);
// message type de-multiplexer
if msg.len() < std::mem::size_of::<u32>() {
continue;
}
match LittleEndian::read_u32(&msg[..]) {
handshake::TYPE_COOKIE_REPLY
| handshake::TYPE_INITIATION
| handshake::TYPE_RESPONSE => {
// update under_load flag
if wg.pending.fetch_add(1, Ordering::SeqCst) > THRESHOLD_UNDER_LOAD {
last_under_load = Instant::now();
wg.under_load.store(true, Ordering::SeqCst);
} else if last_under_load.elapsed() > DURATION_UNDER_LOAD {
wg.under_load.store(false, Ordering::SeqCst);
}
wg.queue
.lock()
.send(HandshakeJob::Message(msg, src))
.unwrap();
}
router::TYPE_TRANSPORT => {
// transport message
let _ = wg.router.recv(src, msg);
}
_ => (),
}
}
});
}
// start TUN read IO thread
{
let wg = wg.clone();
thread::spawn(move || loop {
// create vector big enough for any transport message (based on MTU)
let mtu = tun.mtu();
let size = mtu + router::SIZE_MESSAGE_PREFIX;
let mut msg: Vec<u8> = Vec::with_capacity(size + router::CAPACITY_MESSAGE_POSTFIX);
msg.resize(size, 0);
// read a new IP packet
let payload = tun.read(&mut msg[..], router::SIZE_MESSAGE_PREFIX).unwrap();
debug!("TUN worker, IP packet of {} bytes (MTU = {})", payload, mtu);
// truncate padding
let payload = padding(payload, mtu);
msg.truncate(router::SIZE_MESSAGE_PREFIX + payload);
debug_assert!(payload <= mtu);
debug_assert_eq!(
if payload < mtu {
(msg.len() - router::SIZE_MESSAGE_PREFIX) % MESSAGE_PADDING_MULTIPLE
} else {
0
},
0
);
// crypt-key route
let e = wg.router.send(msg);
debug!("TUN worker, router returned {:?}", e);
});
}
Wireguard {
state: wg,
runner: Runner::new(TIMERS_TICK, TIMERS_SLOTS, TIMERS_CAPACITY),
}
}
}