347 lines
9.9 KiB
Rust
347 lines
9.9 KiB
Rust
use super::constants::*;
|
|
use super::handshake;
|
|
use super::peer::{Peer, PeerInner};
|
|
use super::router;
|
|
use super::timers::{Events, Timers};
|
|
|
|
use super::queue::ParallelQueue;
|
|
use super::workers::HandshakeJob;
|
|
|
|
use super::tun::Tun;
|
|
use super::udp::UDP;
|
|
|
|
use super::workers::{handshake_worker, tun_worker, udp_worker};
|
|
|
|
use std::fmt;
|
|
use std::ops::Deref;
|
|
use std::sync::atomic::{AtomicBool, AtomicU64, AtomicUsize, Ordering};
|
|
use std::sync::Arc;
|
|
use std::sync::Condvar;
|
|
use std::sync::Mutex as StdMutex;
|
|
use std::thread;
|
|
use std::time::Instant;
|
|
|
|
use std::collections::hash_map::Entry;
|
|
use std::collections::HashMap;
|
|
|
|
use hjul::Runner;
|
|
use rand::rngs::OsRng;
|
|
use rand::Rng;
|
|
use spin::{Mutex, RwLock};
|
|
|
|
use x25519_dalek::{PublicKey, StaticSecret};
|
|
|
|
pub struct WireguardInner<T: Tun, B: UDP> {
|
|
// identifier (for logging)
|
|
pub id: u32,
|
|
|
|
// timer wheel
|
|
pub runner: Mutex<Runner>,
|
|
|
|
// device enabled
|
|
pub enabled: RwLock<bool>,
|
|
|
|
// number of tun readers
|
|
pub tun_readers: WaitCounter,
|
|
|
|
// current MTU
|
|
pub mtu: AtomicUsize,
|
|
|
|
// outbound writer
|
|
pub send: RwLock<Option<B::Writer>>,
|
|
|
|
// identity and configuration map
|
|
pub peers: RwLock<HashMap<[u8; 32], Peer<T, B>>>,
|
|
|
|
// cryptokey router
|
|
pub router: router::Device<B::Endpoint, Events<T, B>, T::Writer, B::Writer>,
|
|
|
|
// handshake related state
|
|
pub handshake: RwLock<handshake::Device>,
|
|
pub last_under_load: Mutex<Instant>,
|
|
pub pending: AtomicUsize, // number of pending handshake packets in queue
|
|
pub queue: ParallelQueue<HandshakeJob<B::Endpoint>>,
|
|
}
|
|
|
|
pub struct WireGuard<T: Tun, B: UDP> {
|
|
inner: Arc<WireguardInner<T, B>>,
|
|
}
|
|
|
|
pub struct WaitCounter(StdMutex<usize>, Condvar);
|
|
|
|
impl<T: Tun, B: UDP> fmt::Display for WireGuard<T, B> {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
write!(f, "wireguard({:x})", self.id)
|
|
}
|
|
}
|
|
|
|
impl<T: Tun, B: UDP> Deref for WireGuard<T, B> {
|
|
type Target = WireguardInner<T, B>;
|
|
fn deref(&self) -> &Self::Target {
|
|
&self.inner
|
|
}
|
|
}
|
|
|
|
impl<T: Tun, B: UDP> Clone for WireGuard<T, B> {
|
|
fn clone(&self) -> Self {
|
|
WireGuard {
|
|
inner: self.inner.clone(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl WaitCounter {
|
|
pub fn wait(&self) {
|
|
let mut nread = self.0.lock().unwrap();
|
|
while *nread > 0 {
|
|
nread = self.1.wait(nread).unwrap();
|
|
}
|
|
}
|
|
|
|
fn new() -> Self {
|
|
Self(StdMutex::new(0), Condvar::new())
|
|
}
|
|
|
|
fn decrease(&self) {
|
|
let mut nread = self.0.lock().unwrap();
|
|
assert!(*nread > 0);
|
|
*nread -= 1;
|
|
if *nread == 0 {
|
|
self.1.notify_all();
|
|
}
|
|
}
|
|
|
|
fn increase(&self) {
|
|
*self.0.lock().unwrap() += 1;
|
|
}
|
|
}
|
|
|
|
impl<T: Tun, B: UDP> WireGuard<T, B> {
|
|
/// Brings the WireGuard device down.
|
|
/// Usually called when the associated interface is brought down.
|
|
///
|
|
/// This stops any further action/timer on any peer
|
|
/// and prevents transmission of further messages,
|
|
/// however the device retrains its state.
|
|
///
|
|
/// The instance will continue to consume and discard messages
|
|
/// on both ends of the device.
|
|
pub fn down(&self) {
|
|
// ensure exclusive access (to avoid race with "up" call)
|
|
let mut enabled = self.enabled.write();
|
|
|
|
// check if already down
|
|
if *enabled == false {
|
|
return;
|
|
}
|
|
|
|
// set mtu
|
|
self.mtu.store(0, Ordering::Relaxed);
|
|
|
|
// avoid tranmission from router
|
|
self.router.down();
|
|
|
|
// set all peers down (stops timers)
|
|
for peer in self.peers.write().values() {
|
|
peer.down();
|
|
}
|
|
|
|
*enabled = false;
|
|
}
|
|
|
|
/// Brings the WireGuard device up.
|
|
/// Usually called when the associated interface is brought up.
|
|
pub fn up(&self, mtu: usize) {
|
|
// ensure exclusive access (to avoid race with "up" call)
|
|
let mut enabled = self.enabled.write();
|
|
|
|
// set mtu
|
|
self.mtu.store(mtu, Ordering::Relaxed);
|
|
|
|
// check if already up
|
|
if *enabled {
|
|
return;
|
|
}
|
|
|
|
// enable tranmission from router
|
|
self.router.up();
|
|
|
|
// set all peers up (restarts timers)
|
|
for peer in self.peers.write().values() {
|
|
peer.up();
|
|
}
|
|
|
|
*enabled = true;
|
|
}
|
|
|
|
pub fn clear_peers(&self) {
|
|
self.peers.write().clear();
|
|
}
|
|
|
|
pub fn remove_peer(&self, pk: &PublicKey) {
|
|
if self.handshake.write().remove(pk).is_ok() {
|
|
self.peers.write().remove(pk.as_bytes());
|
|
}
|
|
}
|
|
|
|
pub fn lookup_peer(&self, pk: &PublicKey) -> Option<Peer<T, B>> {
|
|
self.peers.read().get(pk.as_bytes()).map(|p| p.clone())
|
|
}
|
|
|
|
pub fn list_peers(&self) -> Vec<Peer<T, B>> {
|
|
let peers = self.peers.read();
|
|
let mut list = Vec::with_capacity(peers.len());
|
|
for (k, v) in peers.iter() {
|
|
debug_assert!(k == v.pk.as_bytes());
|
|
list.push(v.clone());
|
|
}
|
|
list
|
|
}
|
|
|
|
pub fn set_key(&self, sk: Option<StaticSecret>) {
|
|
let mut handshake = self.handshake.write();
|
|
handshake.set_sk(sk);
|
|
self.router.clear_sending_keys();
|
|
// handshake lock is released and new handshakes can be initated
|
|
}
|
|
|
|
pub fn get_sk(&self) -> Option<StaticSecret> {
|
|
self.handshake
|
|
.read()
|
|
.get_sk()
|
|
.map(|sk| StaticSecret::from(sk.to_bytes()))
|
|
}
|
|
|
|
pub fn set_psk(&self, pk: PublicKey, psk: [u8; 32]) -> bool {
|
|
self.handshake.write().set_psk(pk, psk).is_ok()
|
|
}
|
|
pub fn get_psk(&self, pk: &PublicKey) -> Option<[u8; 32]> {
|
|
self.handshake.read().get_psk(pk).ok()
|
|
}
|
|
|
|
pub fn add_peer(&self, pk: PublicKey) -> bool {
|
|
if self.peers.read().contains_key(pk.as_bytes()) {
|
|
return false;
|
|
}
|
|
|
|
let mut rng = OsRng::new().unwrap();
|
|
let state = Arc::new(PeerInner {
|
|
id: rng.gen(),
|
|
pk,
|
|
wg: self.clone(),
|
|
walltime_last_handshake: Mutex::new(None),
|
|
last_handshake_sent: Mutex::new(Instant::now() - TIME_HORIZON),
|
|
handshake_queued: AtomicBool::new(false),
|
|
rx_bytes: AtomicU64::new(0),
|
|
tx_bytes: AtomicU64::new(0),
|
|
timers: RwLock::new(Timers::dummy(&*self.runner.lock())),
|
|
});
|
|
|
|
// create a router peer
|
|
let router = Arc::new(self.router.new_peer(state.clone()));
|
|
|
|
// form WireGuard peer
|
|
let peer = Peer { router, state };
|
|
|
|
// finally, add the peer to the wireguard device
|
|
let mut peers = self.peers.write();
|
|
match peers.entry(*pk.as_bytes()) {
|
|
Entry::Occupied(_) => false,
|
|
Entry::Vacant(vacancy) => {
|
|
// check that the public key does not cause conflict with the private key of the device
|
|
let ok_pk = self.handshake.write().add(pk).is_ok();
|
|
if !ok_pk {
|
|
return false;
|
|
}
|
|
|
|
// prevent up/down while inserting
|
|
let enabled = self.enabled.read();
|
|
|
|
/* The need for dummy timers arises from the chicken-egg
|
|
* problem of the timer callbacks being able to set timers themselves.
|
|
*
|
|
* This is in fact the only place where the write lock is ever taken.
|
|
* TODO: Consider the ease of using atomic pointers instead.
|
|
*/
|
|
*peer.timers.write() = Timers::new(&*self.runner.lock(), *enabled, peer.clone());
|
|
|
|
// insert into peer map (takes ownership and ensures that the peer is not dropped)
|
|
vacancy.insert(peer);
|
|
true
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Begin consuming messages from the reader.
|
|
/// Multiple readers can be added to support multi-queue and individual Ipv6/Ipv4 sockets interfaces
|
|
///
|
|
/// Any previous reader thread is stopped by closing the previous reader,
|
|
/// which unblocks the thread and causes an error on reader.read
|
|
pub fn add_udp_reader(&self, reader: B::Reader) {
|
|
let wg = self.clone();
|
|
thread::spawn(move || {
|
|
udp_worker(&wg, reader);
|
|
});
|
|
}
|
|
|
|
pub fn set_writer(&self, writer: B::Writer) {
|
|
// TODO: Consider unifying these and avoid Clone requirement on writer
|
|
*self.send.write() = Some(writer.clone());
|
|
self.router.set_outbound_writer(writer);
|
|
}
|
|
|
|
pub fn add_tun_reader(&self, reader: T::Reader) {
|
|
let wg = self.clone();
|
|
|
|
// increment reader count
|
|
wg.tun_readers.increase();
|
|
|
|
// start worker
|
|
thread::spawn(move || {
|
|
tun_worker(&wg, reader);
|
|
wg.tun_readers.decrease();
|
|
});
|
|
}
|
|
|
|
pub fn wait(&self) {
|
|
self.tun_readers.wait();
|
|
}
|
|
|
|
pub fn new(writer: T::Writer) -> WireGuard<T, B> {
|
|
// workers equal to number of physical cores
|
|
let cpus = num_cpus::get();
|
|
|
|
// create device state
|
|
let mut rng = OsRng::new().unwrap();
|
|
|
|
// create handshake queue
|
|
let (tx, mut rxs) = ParallelQueue::new(cpus, 128);
|
|
|
|
// create arc to state
|
|
let wg = WireGuard {
|
|
inner: Arc::new(WireguardInner {
|
|
enabled: RwLock::new(false),
|
|
tun_readers: WaitCounter::new(),
|
|
id: rng.gen(),
|
|
mtu: AtomicUsize::new(0),
|
|
peers: RwLock::new(HashMap::new()),
|
|
last_under_load: Mutex::new(Instant::now() - TIME_HORIZON),
|
|
send: RwLock::new(None),
|
|
router: router::Device::new(num_cpus::get(), writer), // router owns the writing half
|
|
pending: AtomicUsize::new(0),
|
|
handshake: RwLock::new(handshake::Device::new()),
|
|
runner: Mutex::new(Runner::new(TIMERS_TICK, TIMERS_SLOTS, TIMERS_CAPACITY)),
|
|
queue: tx,
|
|
}),
|
|
};
|
|
|
|
// start handshake workers
|
|
while let Some(rx) = rxs.pop() {
|
|
let wg = wg.clone();
|
|
thread::spawn(move || handshake_worker(&wg, rx));
|
|
}
|
|
|
|
wg
|
|
}
|
|
}
|