Files
wireguard-rs/src/wireguard/wireguard.rs
2019-12-26 22:55:33 +01:00

347 lines
9.9 KiB
Rust

use super::constants::*;
use super::handshake;
use super::peer::{Peer, PeerInner};
use super::router;
use super::timers::{Events, Timers};
use super::queue::ParallelQueue;
use super::workers::HandshakeJob;
use super::tun::Tun;
use super::udp::UDP;
use super::workers::{handshake_worker, tun_worker, udp_worker};
use std::fmt;
use std::ops::Deref;
use std::sync::atomic::{AtomicBool, AtomicU64, AtomicUsize, Ordering};
use std::sync::Arc;
use std::sync::Condvar;
use std::sync::Mutex as StdMutex;
use std::thread;
use std::time::Instant;
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use hjul::Runner;
use rand::rngs::OsRng;
use rand::Rng;
use spin::{Mutex, RwLock};
use x25519_dalek::{PublicKey, StaticSecret};
pub struct WireguardInner<T: Tun, B: UDP> {
// identifier (for logging)
pub id: u32,
// timer wheel
pub runner: Mutex<Runner>,
// device enabled
pub enabled: RwLock<bool>,
// number of tun readers
pub tun_readers: WaitCounter,
// current MTU
pub mtu: AtomicUsize,
// outbound writer
pub send: RwLock<Option<B::Writer>>,
// identity and configuration map
pub peers: RwLock<HashMap<[u8; 32], Peer<T, B>>>,
// cryptokey router
pub router: router::Device<B::Endpoint, Events<T, B>, T::Writer, B::Writer>,
// handshake related state
pub handshake: RwLock<handshake::Device>,
pub last_under_load: Mutex<Instant>,
pub pending: AtomicUsize, // number of pending handshake packets in queue
pub queue: ParallelQueue<HandshakeJob<B::Endpoint>>,
}
pub struct WireGuard<T: Tun, B: UDP> {
inner: Arc<WireguardInner<T, B>>,
}
pub struct WaitCounter(StdMutex<usize>, Condvar);
impl<T: Tun, B: UDP> fmt::Display for WireGuard<T, B> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "wireguard({:x})", self.id)
}
}
impl<T: Tun, B: UDP> Deref for WireGuard<T, B> {
type Target = WireguardInner<T, B>;
fn deref(&self) -> &Self::Target {
&self.inner
}
}
impl<T: Tun, B: UDP> Clone for WireGuard<T, B> {
fn clone(&self) -> Self {
WireGuard {
inner: self.inner.clone(),
}
}
}
impl WaitCounter {
pub fn wait(&self) {
let mut nread = self.0.lock().unwrap();
while *nread > 0 {
nread = self.1.wait(nread).unwrap();
}
}
fn new() -> Self {
Self(StdMutex::new(0), Condvar::new())
}
fn decrease(&self) {
let mut nread = self.0.lock().unwrap();
assert!(*nread > 0);
*nread -= 1;
if *nread == 0 {
self.1.notify_all();
}
}
fn increase(&self) {
*self.0.lock().unwrap() += 1;
}
}
impl<T: Tun, B: UDP> WireGuard<T, B> {
/// Brings the WireGuard device down.
/// Usually called when the associated interface is brought down.
///
/// This stops any further action/timer on any peer
/// and prevents transmission of further messages,
/// however the device retrains its state.
///
/// The instance will continue to consume and discard messages
/// on both ends of the device.
pub fn down(&self) {
// ensure exclusive access (to avoid race with "up" call)
let mut enabled = self.enabled.write();
// check if already down
if *enabled == false {
return;
}
// set mtu
self.mtu.store(0, Ordering::Relaxed);
// avoid tranmission from router
self.router.down();
// set all peers down (stops timers)
for peer in self.peers.write().values() {
peer.down();
}
*enabled = false;
}
/// Brings the WireGuard device up.
/// Usually called when the associated interface is brought up.
pub fn up(&self, mtu: usize) {
// ensure exclusive access (to avoid race with "up" call)
let mut enabled = self.enabled.write();
// set mtu
self.mtu.store(mtu, Ordering::Relaxed);
// check if already up
if *enabled {
return;
}
// enable tranmission from router
self.router.up();
// set all peers up (restarts timers)
for peer in self.peers.write().values() {
peer.up();
}
*enabled = true;
}
pub fn clear_peers(&self) {
self.peers.write().clear();
}
pub fn remove_peer(&self, pk: &PublicKey) {
if self.handshake.write().remove(pk).is_ok() {
self.peers.write().remove(pk.as_bytes());
}
}
pub fn lookup_peer(&self, pk: &PublicKey) -> Option<Peer<T, B>> {
self.peers.read().get(pk.as_bytes()).map(|p| p.clone())
}
pub fn list_peers(&self) -> Vec<Peer<T, B>> {
let peers = self.peers.read();
let mut list = Vec::with_capacity(peers.len());
for (k, v) in peers.iter() {
debug_assert!(k == v.pk.as_bytes());
list.push(v.clone());
}
list
}
pub fn set_key(&self, sk: Option<StaticSecret>) {
let mut handshake = self.handshake.write();
handshake.set_sk(sk);
self.router.clear_sending_keys();
// handshake lock is released and new handshakes can be initated
}
pub fn get_sk(&self) -> Option<StaticSecret> {
self.handshake
.read()
.get_sk()
.map(|sk| StaticSecret::from(sk.to_bytes()))
}
pub fn set_psk(&self, pk: PublicKey, psk: [u8; 32]) -> bool {
self.handshake.write().set_psk(pk, psk).is_ok()
}
pub fn get_psk(&self, pk: &PublicKey) -> Option<[u8; 32]> {
self.handshake.read().get_psk(pk).ok()
}
pub fn add_peer(&self, pk: PublicKey) -> bool {
if self.peers.read().contains_key(pk.as_bytes()) {
return false;
}
let mut rng = OsRng::new().unwrap();
let state = Arc::new(PeerInner {
id: rng.gen(),
pk,
wg: self.clone(),
walltime_last_handshake: Mutex::new(None),
last_handshake_sent: Mutex::new(Instant::now() - TIME_HORIZON),
handshake_queued: AtomicBool::new(false),
rx_bytes: AtomicU64::new(0),
tx_bytes: AtomicU64::new(0),
timers: RwLock::new(Timers::dummy(&*self.runner.lock())),
});
// create a router peer
let router = Arc::new(self.router.new_peer(state.clone()));
// form WireGuard peer
let peer = Peer { router, state };
// finally, add the peer to the wireguard device
let mut peers = self.peers.write();
match peers.entry(*pk.as_bytes()) {
Entry::Occupied(_) => false,
Entry::Vacant(vacancy) => {
// check that the public key does not cause conflict with the private key of the device
let ok_pk = self.handshake.write().add(pk).is_ok();
if !ok_pk {
return false;
}
// prevent up/down while inserting
let enabled = self.enabled.read();
/* The need for dummy timers arises from the chicken-egg
* problem of the timer callbacks being able to set timers themselves.
*
* This is in fact the only place where the write lock is ever taken.
* TODO: Consider the ease of using atomic pointers instead.
*/
*peer.timers.write() = Timers::new(&*self.runner.lock(), *enabled, peer.clone());
// insert into peer map (takes ownership and ensures that the peer is not dropped)
vacancy.insert(peer);
true
}
}
}
/// Begin consuming messages from the reader.
/// Multiple readers can be added to support multi-queue and individual Ipv6/Ipv4 sockets interfaces
///
/// Any previous reader thread is stopped by closing the previous reader,
/// which unblocks the thread and causes an error on reader.read
pub fn add_udp_reader(&self, reader: B::Reader) {
let wg = self.clone();
thread::spawn(move || {
udp_worker(&wg, reader);
});
}
pub fn set_writer(&self, writer: B::Writer) {
// TODO: Consider unifying these and avoid Clone requirement on writer
*self.send.write() = Some(writer.clone());
self.router.set_outbound_writer(writer);
}
pub fn add_tun_reader(&self, reader: T::Reader) {
let wg = self.clone();
// increment reader count
wg.tun_readers.increase();
// start worker
thread::spawn(move || {
tun_worker(&wg, reader);
wg.tun_readers.decrease();
});
}
pub fn wait(&self) {
self.tun_readers.wait();
}
pub fn new(writer: T::Writer) -> WireGuard<T, B> {
// workers equal to number of physical cores
let cpus = num_cpus::get();
// create device state
let mut rng = OsRng::new().unwrap();
// create handshake queue
let (tx, mut rxs) = ParallelQueue::new(cpus, 128);
// create arc to state
let wg = WireGuard {
inner: Arc::new(WireguardInner {
enabled: RwLock::new(false),
tun_readers: WaitCounter::new(),
id: rng.gen(),
mtu: AtomicUsize::new(0),
peers: RwLock::new(HashMap::new()),
last_under_load: Mutex::new(Instant::now() - TIME_HORIZON),
send: RwLock::new(None),
router: router::Device::new(num_cpus::get(), writer), // router owns the writing half
pending: AtomicUsize::new(0),
handshake: RwLock::new(handshake::Device::new()),
runner: Mutex::new(Runner::new(TIMERS_TICK, TIMERS_SLOTS, TIMERS_CAPACITY)),
queue: tx,
}),
};
// start handshake workers
while let Some(rx) = rxs.pop() {
let wg = wg.clone();
thread::spawn(move || handshake_worker(&wg, rx));
}
wg
}
}