Work on netlink IF event code for Linux

This commit is contained in:
Mathias Hall-Andersen
2019-11-27 16:59:54 +01:00
parent f228b6f98b
commit 04f507556b
6 changed files with 311 additions and 109 deletions

View File

@@ -261,7 +261,7 @@ impl<T: tun::Tun, B: udp::PlatformUDP> Configuration for WireguardConfig<T, B> {
// add readers // add readers
while let Some(reader) = readers.pop() { while let Some(reader) = readers.pop() {
cfg.wireguard.add_reader(reader); cfg.wireguard.add_udp_reader(reader);
} }
// create new UDP state // create new UDP state

View File

@@ -26,7 +26,7 @@ fn main() {
let mut foreground = false; let mut foreground = false;
let mut args = env::args(); let mut args = env::args();
args.next(); // skip path args.next(); // skip path (argv[0])
for arg in args { for arg in args {
match arg.as_str() { match arg.as_str() {
@@ -56,7 +56,7 @@ fn main() {
}); });
// create TUN device // create TUN device
let (readers, writer, status) = plt::Tun::create(name.as_str()).unwrap_or_else(|e| { let (mut readers, writer, status) = plt::Tun::create(name.as_str()).unwrap_or_else(|e| {
eprintln!("Failed to create TUN device: {}", e); eprintln!("Failed to create TUN device: {}", e);
exit(-3); exit(-3);
}); });
@@ -82,7 +82,15 @@ fn main() {
if drop_privileges {} if drop_privileges {}
// create WireGuard device // create WireGuard device
let wg: wireguard::Wireguard<plt::Tun, plt::UDP> = wireguard::Wireguard::new(readers, writer); let wg: wireguard::Wireguard<plt::Tun, plt::UDP> = wireguard::Wireguard::new(writer);
// add all Tun readers
while let Some(reader) = readers.pop() {
wg.add_tun_reader(reader);
}
// obtain handle for waiting
let wait = wg.wait();
// wrap in configuration interface // wrap in configuration interface
let cfg = configuration::WireguardConfig::new(wg); let cfg = configuration::WireguardConfig::new(wg);
@@ -124,7 +132,7 @@ fn main() {
} }
// start UAPI server // start UAPI server
loop { thread::spawn(move || loop {
match uapi.connect() { match uapi.connect() {
Ok(mut stream) => { Ok(mut stream) => {
let cfg = cfg.clone(); let cfg = cfg.clone();
@@ -137,5 +145,8 @@ fn main() {
break; break;
} }
} }
} });
// block until all tun readers closed
wait.wait();
} }

View File

@@ -1,13 +1,12 @@
use super::super::tun::*; use super::super::tun::*;
use libc::*; use libc;
use std::error::Error; use std::error::Error;
use std::fmt; use std::fmt;
use std::mem;
use std::os::raw::c_short; use std::os::raw::c_short;
use std::os::unix::io::RawFd; use std::os::unix::io::RawFd;
use std::thread;
use std::time::Duration;
const IFNAMSIZ: usize = 16; const IFNAMSIZ: usize = 16;
const TUNSETIFF: u64 = 0x4004_54ca; const TUNSETIFF: u64 = 0x4004_54ca;
@@ -30,6 +29,18 @@ struct Ifreq {
_pad: [u8; 64], _pad: [u8; 64],
} }
// man 7 rtnetlink
// Layout from: https://elixir.bootlin.com/linux/latest/source/include/uapi/linux/rtnetlink.h#L516
#[repr(C)]
struct IfInfomsg {
ifi_family: libc::c_uchar,
__ifi_pad: libc::c_uchar,
ifi_type: libc::c_ushort,
ifi_index: libc::c_int,
ifi_flags: libc::c_uint,
ifi_change: libc::c_uint,
}
pub struct LinuxTun { pub struct LinuxTun {
events: Vec<TunEvent>, events: Vec<TunEvent>,
} }
@@ -42,12 +53,9 @@ pub struct LinuxTunWriter {
fd: RawFd, fd: RawFd,
} }
/* Listens for netlink messages
* announcing an MTU update for the interface
*/
#[derive(Clone)]
pub struct LinuxTunStatus { pub struct LinuxTunStatus {
first: bool, events: Vec<TunEvent>,
fd: RawFd,
} }
#[derive(Debug)] #[derive(Debug)]
@@ -94,7 +102,7 @@ impl Reader for LinuxTunReader {
); );
*/ */
let n: isize = let n: isize =
unsafe { read(self.fd, buf[offset..].as_mut_ptr() as _, buf.len() - offset) }; unsafe { libc::read(self.fd, buf[offset..].as_mut_ptr() as _, buf.len() - offset) };
if n < 0 { if n < 0 {
Err(LinuxTunError::Closed) Err(LinuxTunError::Closed)
} else { } else {
@@ -108,7 +116,7 @@ impl Writer for LinuxTunWriter {
type Error = LinuxTunError; type Error = LinuxTunError;
fn write(&self, src: &[u8]) -> Result<(), Self::Error> { fn write(&self, src: &[u8]) -> Result<(), Self::Error> {
match unsafe { write(self.fd, src.as_ptr() as _, src.len() as _) } { match unsafe { libc::write(self.fd, src.as_ptr() as _, src.len() as _) } {
-1 => Err(LinuxTunError::Closed), -1 => Err(LinuxTunError::Closed),
_ => Ok(()), _ => Ok(()),
} }
@@ -119,13 +127,124 @@ impl Status for LinuxTunStatus {
type Error = LinuxTunError; type Error = LinuxTunError;
fn event(&mut self) -> Result<TunEvent, Self::Error> { fn event(&mut self) -> Result<TunEvent, Self::Error> {
if self.first { const DONE: u16 = libc::NLMSG_DONE as u16;
self.first = false; const ERROR: u16 = libc::NLMSG_ERROR as u16;
return Ok(TunEvent::Up(1420)); const INFO_SIZE: usize = mem::size_of::<IfInfomsg>();
const HDR_SIZE: usize = mem::size_of::<libc::nlmsghdr>();
let mut buf = [0u8; 1 << 12];
log::debug!("netlink, fetch event (fd = {})", self.fd);
loop {
// attempt to return a buffered event
if let Some(event) = self.events.pop() {
return Ok(event);
}
// read message
let size: libc::ssize_t =
unsafe { libc::recv(self.fd, mem::transmute(&mut buf), buf.len(), 0) };
if size < 0 {
break Err(LinuxTunError::Closed);
}
// cut buffer to size
let size: usize = size as usize;
let mut remain = &buf[..size];
log::debug!("netlink, recieved message ({} bytes)", size);
// handle messages
while remain.len() >= HDR_SIZE {
// extract the header
assert!(remain.len() > HDR_SIZE);
let mut hdr = [0u8; HDR_SIZE];
hdr.copy_from_slice(&remain[..HDR_SIZE]);
let hdr: libc::nlmsghdr = unsafe { mem::transmute(hdr) };
// upcast length
let body: &[u8] = &remain[HDR_SIZE..];
let msg_len: usize = hdr.nlmsg_len as usize;
assert!(msg_len <= remain.len(), "malformed netlink message");
// handle message body
match hdr.nlmsg_type {
DONE => break,
ERROR => break,
libc::RTM_NEWLINK => {
// extract info struct
if body.len() < INFO_SIZE {
return Err(LinuxTunError::Closed);
}
let mut info = [0u8; INFO_SIZE];
info.copy_from_slice(&body[..INFO_SIZE]);
log::debug!("netlink, RTM_NEWLINK {:?}", &info[..]);
let info: IfInfomsg = unsafe { mem::transmute(info) };
// trace log
log::trace!(
"netlink, IfInfomsg{{ family = {}, type = {}, index = {}, flags = {}, change = {}}}",
info.ifi_family,
info.ifi_type,
info.ifi_index,
info.ifi_flags,
info.ifi_change,
);
debug_assert_eq!(info.__ifi_pad, 0);
// handle up / down
if info.ifi_flags & (libc::IFF_UP as u32) != 0 {
log::trace!("netlink, up event");
self.events.push(TunEvent::Up(1420));
} else {
log::trace!("netlink, down event");
self.events.push(TunEvent::Down);
}
}
_ => (),
};
// go to next message
remain = &remain[msg_len..];
}
}
}
}
impl LinuxTunStatus {
const RTNLGRP_LINK: libc::c_uint = 1;
const RTNLGRP_IPV4_IFADDR: libc::c_uint = 5;
const RTNLGRP_IPV6_IFADDR: libc::c_uint = 9;
fn new() -> Result<LinuxTunStatus, LinuxTunError> {
// create netlink socket
let fd = unsafe { libc::socket(libc::AF_NETLINK, libc::SOCK_RAW, libc::NETLINK_ROUTE) };
if fd < 0 {
return Err(LinuxTunError::Closed);
} }
loop { // prepare address (specify groups)
thread::sleep(Duration::from_secs(60 * 60)); let groups = (1 << (Self::RTNLGRP_LINK - 1))
| (1 << (Self::RTNLGRP_IPV4_IFADDR - 1))
| (1 << (Self::RTNLGRP_IPV6_IFADDR - 1));
let mut sockaddr: libc::sockaddr_nl = unsafe { mem::zeroed() };
sockaddr.nl_family = libc::AF_NETLINK as u16;
sockaddr.nl_groups = groups;
sockaddr.nl_pid = 0;
// attempt to bind
let res = unsafe {
libc::bind(
fd,
mem::transmute(&mut sockaddr),
mem::size_of::<libc::sockaddr_nl>() as u32,
)
};
if res != 0 {
Err(LinuxTunError::Closed)
} else {
Ok(LinuxTunStatus { events: vec![], fd })
} }
} }
} }
@@ -155,14 +274,14 @@ impl PlatformTun for LinuxTun {
req.name[..bs.len()].copy_from_slice(bs); req.name[..bs.len()].copy_from_slice(bs);
// open clone device // open clone device
let fd: RawFd = match unsafe { open(CLONE_DEVICE_PATH.as_ptr() as _, O_RDWR) } { let fd: RawFd = match unsafe { libc::open(CLONE_DEVICE_PATH.as_ptr() as _, libc::O_RDWR) } {
-1 => return Err(LinuxTunError::FailedToOpenCloneDevice), -1 => return Err(LinuxTunError::FailedToOpenCloneDevice),
fd => fd, fd => fd,
}; };
assert!(fd >= 0); assert!(fd >= 0);
// create TUN device // create TUN device
if unsafe { ioctl(fd, TUNSETIFF as _, &req) } < 0 { if unsafe { libc::ioctl(fd, TUNSETIFF as _, &req) } < 0 {
return Err(LinuxTunError::SetIFFIoctlFailed); return Err(LinuxTunError::SetIFFIoctlFailed);
} }
@@ -170,7 +289,7 @@ impl PlatformTun for LinuxTun {
Ok(( Ok((
vec![LinuxTunReader { fd }], // TODO: enable multi-queue for Linux vec![LinuxTunReader { fd }], // TODO: enable multi-queue for Linux
LinuxTunWriter { fd }, LinuxTunWriter { fd },
LinuxTunStatus { first: true }, LinuxTunStatus::new()?,
)) ))
} }
} }

View File

@@ -85,15 +85,13 @@ fn test_pure_wireguard() {
// create WG instances for dummy TUN devices // create WG instances for dummy TUN devices
let (fake1, tun_reader1, tun_writer1, _) = dummy::TunTest::create(true); let (fake1, tun_reader1, tun_writer1, _) = dummy::TunTest::create(true);
let wg1: Wireguard<dummy::TunTest, dummy::PairBind> = let wg1: Wireguard<dummy::TunTest, dummy::PairBind> = Wireguard::new(tun_writer1);
Wireguard::new(vec![tun_reader1], tun_writer1); wg1.add_tun_reader(tun_reader1);
wg1.up(1500); wg1.up(1500);
let (fake2, tun_reader2, tun_writer2, _) = dummy::TunTest::create(true); let (fake2, tun_reader2, tun_writer2, _) = dummy::TunTest::create(true);
let wg2: Wireguard<dummy::TunTest, dummy::PairBind> = let wg2: Wireguard<dummy::TunTest, dummy::PairBind> = Wireguard::new(tun_writer2);
Wireguard::new(vec![tun_reader2], tun_writer2); wg2.add_tun_reader(tun_reader2);
wg2.up(1500); wg2.up(1500);
// create pair bind to connect the interfaces "over the internet" // create pair bind to connect the interfaces "over the internet"
@@ -103,8 +101,8 @@ fn test_pure_wireguard() {
wg1.set_writer(bind_writer1); wg1.set_writer(bind_writer1);
wg2.set_writer(bind_writer2); wg2.set_writer(bind_writer2);
wg1.add_reader(bind_reader1); wg1.add_udp_reader(bind_reader1);
wg2.add_reader(bind_reader2); wg2.add_udp_reader(bind_reader2);
// generate (public, pivate) key pairs // generate (public, pivate) key pairs

View File

@@ -221,14 +221,14 @@ impl<T: tun::Tun, B: udp::UDP> PeerInner<T, B> {
impl Timers { impl Timers {
pub fn new<T, B>(runner: &Runner, peer: Peer<T, B>) -> Timers pub fn new<T, B>(runner: &Runner, running: bool, peer: Peer<T, B>) -> Timers
where where
T: tun::Tun, T: tun::Tun,
B: udp::UDP, B: udp::UDP,
{ {
// create a timer instance for the provided peer // create a timer instance for the provided peer
Timers { Timers {
enabled: true, enabled: running,
keepalive_interval: 0, // disabled keepalive_interval: 0, // disabled
need_another_keepalive: AtomicBool::new(false), need_another_keepalive: AtomicBool::new(false),
sent_lastminute_handshake: AtomicBool::new(false), sent_lastminute_handshake: AtomicBool::new(false),

View File

@@ -22,6 +22,10 @@ use std::sync::Arc;
use std::thread; use std::thread;
use std::time::{Duration, Instant}; use std::time::{Duration, Instant};
// TODO: avoid
use std::sync::Condvar;
use std::sync::Mutex as StdMutex;
use std::collections::hash_map::Entry; use std::collections::hash_map::Entry;
use std::collections::HashMap; use std::collections::HashMap;
@@ -38,15 +42,51 @@ const SIZE_HANDSHAKE_QUEUE: usize = 128;
const THRESHOLD_UNDER_LOAD: usize = SIZE_HANDSHAKE_QUEUE / 4; const THRESHOLD_UNDER_LOAD: usize = SIZE_HANDSHAKE_QUEUE / 4;
const DURATION_UNDER_LOAD: Duration = Duration::from_millis(10_000); const DURATION_UNDER_LOAD: Duration = Duration::from_millis(10_000);
#[derive(Clone)]
pub struct WaitHandle(Arc<(StdMutex<usize>, Condvar)>);
impl WaitHandle {
pub fn wait(&self) {
let (lock, cvar) = &*self.0;
let mut nread = lock.lock().unwrap();
while *nread > 0 {
nread = cvar.wait(nread).unwrap();
}
}
fn new() -> Self {
Self(Arc::new((StdMutex::new(0), Condvar::new())))
}
fn decrease(&self) {
let (lock, cvar) = &*self.0;
let mut nread = lock.lock().unwrap();
assert!(*nread > 0);
*nread -= 1;
cvar.notify_all();
}
fn increase(&self) {
let (lock, _) = &*self.0;
let mut nread = lock.lock().unwrap();
*nread += 1;
}
}
pub struct WireguardInner<T: tun::Tun, B: udp::UDP> { pub struct WireguardInner<T: tun::Tun, B: udp::UDP> {
// identifier (for logging) // identifier (for logging)
id: u32, id: u32,
start: Instant,
// device enabled
enabled: RwLock<bool>,
// enables waiting for all readers to finish
tun_readers: WaitHandle,
// current MTU // current MTU
mtu: AtomicUsize, mtu: AtomicUsize,
// provides access to the MTU value of the tun device // outbound writer
send: RwLock<Option<B::Writer>>, send: RwLock<Option<B::Writer>>,
// identity and configuration map // identity and configuration map
@@ -145,7 +185,12 @@ impl<T: tun::Tun, B: udp::UDP> Wireguard<T, B> {
/// on both ends of the device. /// on both ends of the device.
pub fn down(&self) { pub fn down(&self) {
// ensure exclusive access (to avoid race with "up" call) // ensure exclusive access (to avoid race with "up" call)
let peers = self.peers.write(); let mut enabled = self.enabled.write();
// check if already down
if *enabled == false {
return;
}
// set mtu // set mtu
self.state.mtu.store(0, Ordering::Relaxed); self.state.mtu.store(0, Ordering::Relaxed);
@@ -154,27 +199,36 @@ impl<T: tun::Tun, B: udp::UDP> Wireguard<T, B> {
self.router.down(); self.router.down();
// set all peers down (stops timers) // set all peers down (stops timers)
for peer in peers.values() { for peer in self.peers.write().values() {
peer.down(); peer.down();
} }
*enabled = false;
} }
/// Brings the WireGuard device up. /// Brings the WireGuard device up.
/// Usually called when the associated interface is brought up. /// Usually called when the associated interface is brought up.
pub fn up(&self, mtu: usize) { pub fn up(&self, mtu: usize) {
// ensure exclusive access (to avoid race with "down" call) // ensure exclusive access (to avoid race with "up" call)
let peers = self.peers.write(); let mut enabled = self.enabled.write();
// set mtu // set mtu
self.state.mtu.store(mtu, Ordering::Relaxed); self.state.mtu.store(mtu, Ordering::Relaxed);
// check if already up
if *enabled {
return;
}
// enable tranmission from router // enable tranmission from router
self.router.up(); self.router.up();
// set all peers up (restarts timers) // set all peers up (restarts timers)
for peer in peers.values() { for peer in self.peers.write().values() {
peer.up(); peer.up();
} }
*enabled = true;
} }
pub fn clear_peers(&self) { pub fn clear_peers(&self) {
@@ -232,7 +286,7 @@ impl<T: tun::Tun, B: udp::UDP> Wireguard<T, B> {
pk, pk,
wg: self.state.clone(), wg: self.state.clone(),
walltime_last_handshake: Mutex::new(None), walltime_last_handshake: Mutex::new(None),
last_handshake_sent: Mutex::new(self.state.start - TIME_HORIZON), last_handshake_sent: Mutex::new(Instant::now() - TIME_HORIZON),
handshake_queued: AtomicBool::new(false), handshake_queued: AtomicBool::new(false),
queue: Mutex::new(self.state.queue.lock().clone()), queue: Mutex::new(self.state.queue.lock().clone()),
rx_bytes: AtomicU64::new(0), rx_bytes: AtomicU64::new(0),
@@ -246,24 +300,31 @@ impl<T: tun::Tun, B: udp::UDP> Wireguard<T, B> {
// form WireGuard peer // form WireGuard peer
let peer = Peer { router, state }; let peer = Peer { router, state };
/* The need for dummy timers arises from the chicken-egg
* problem of the timer callbacks being able to set timers themselves.
*
* This is in fact the only place where the write lock is ever taken.
* TODO: Consider the ease of using atomic pointers instead.
*/
*peer.timers.write() = Timers::new(&self.runner, peer.clone());
// finally, add the peer to the wireguard device // finally, add the peer to the wireguard device
let mut peers = self.state.peers.write(); let mut peers = self.state.peers.write();
match peers.entry(*pk.as_bytes()) { match peers.entry(*pk.as_bytes()) {
Entry::Occupied(_) => false, Entry::Occupied(_) => false,
Entry::Vacant(vacancy) => { Entry::Vacant(vacancy) => {
// check that the public key does not cause conflict with the private key of the device
let ok_pk = self.state.handshake.write().add(pk).is_ok(); let ok_pk = self.state.handshake.write().add(pk).is_ok();
if ok_pk { if !ok_pk {
vacancy.insert(peer); return false;
} }
ok_pk
// prevent up/down while inserting
let enabled = self.enabled.read();
/* The need for dummy timers arises from the chicken-egg
* problem of the timer callbacks being able to set timers themselves.
*
* This is in fact the only place where the write lock is ever taken.
* TODO: Consider the ease of using atomic pointers instead.
*/
*peer.timers.write() = Timers::new(&self.runner, *enabled, peer.clone());
// insert into peer map (takes ownership and ensures that the peer is not dropped)
vacancy.insert(peer);
true
} }
} }
} }
@@ -273,7 +334,7 @@ impl<T: tun::Tun, B: udp::UDP> Wireguard<T, B> {
/// ///
/// Any previous reader thread is stopped by closing the previous reader, /// Any previous reader thread is stopped by closing the previous reader,
/// which unblocks the thread and causes an error on reader.read /// which unblocks the thread and causes an error on reader.read
pub fn add_reader(&self, reader: B::Reader) { pub fn add_udp_reader(&self, reader: B::Reader) {
let wg = self.state.clone(); let wg = self.state.clone();
thread::spawn(move || { thread::spawn(move || {
let mut last_under_load = let mut last_under_load =
@@ -350,7 +411,72 @@ impl<T: tun::Tun, B: udp::UDP> Wireguard<T, B> {
self.state.router.set_outbound_writer(writer); self.state.router.set_outbound_writer(writer);
} }
pub fn new(mut readers: Vec<T::Reader>, writer: T::Writer) -> Wireguard<T, B> { pub fn add_tun_reader(&self, reader: T::Reader) {
fn worker<T: tun::Tun, B: udp::UDP>(wg: &Arc<WireguardInner<T, B>>, reader: T::Reader) {
loop {
// create vector big enough for any transport message (based on MTU)
let mtu = wg.mtu.load(Ordering::Relaxed);
let size = mtu + router::SIZE_MESSAGE_PREFIX + 1;
let mut msg: Vec<u8> = Vec::with_capacity(size + router::CAPACITY_MESSAGE_POSTFIX);
msg.resize(size, 0);
// read a new IP packet
let payload = match reader.read(&mut msg[..], router::SIZE_MESSAGE_PREFIX) {
Ok(payload) => payload,
Err(e) => {
debug!("TUN worker, failed to read from tun device: {}", e);
break;
}
};
debug!("TUN worker, IP packet of {} bytes (MTU = {})", payload, mtu);
// TODO: start device down
if mtu == 0 {
continue;
}
// truncate padding
let padded = padding(payload, mtu);
log::trace!(
"TUN worker, payload length = {}, padded length = {}",
payload,
padded
);
msg.truncate(router::SIZE_MESSAGE_PREFIX + padded);
debug_assert!(padded <= mtu);
debug_assert_eq!(
if padded < mtu {
(msg.len() - router::SIZE_MESSAGE_PREFIX) % MESSAGE_PADDING_MULTIPLE
} else {
0
},
0
);
// crypt-key route
let e = wg.router.send(msg);
debug!("TUN worker, router returned {:?}", e);
}
}
// start a thread for every reader
let wg = self.state.clone();
// increment reader count
wg.tun_readers.increase();
// start worker
thread::spawn(move || {
worker(&wg, reader);
wg.tun_readers.decrease();
});
}
pub fn wait(&self) -> WaitHandle {
self.state.tun_readers.clone()
}
pub fn new(writer: T::Writer) -> Wireguard<T, B> {
// create device state // create device state
let mut rng = OsRng::new().unwrap(); let mut rng = OsRng::new().unwrap();
@@ -358,7 +484,8 @@ impl<T: tun::Tun, B: udp::UDP> Wireguard<T, B> {
let (tx, rx): (Sender<HandshakeJob<B::Endpoint>>, _) = bounded(SIZE_HANDSHAKE_QUEUE); let (tx, rx): (Sender<HandshakeJob<B::Endpoint>>, _) = bounded(SIZE_HANDSHAKE_QUEUE);
let wg = Arc::new(WireguardInner { let wg = Arc::new(WireguardInner {
start: Instant::now(), enabled: RwLock::new(false),
tun_readers: WaitHandle::new(),
id: rng.gen(), id: rng.gen(),
mtu: AtomicUsize::new(0), mtu: AtomicUsize::new(0),
peers: RwLock::new(HashMap::new()), peers: RwLock::new(HashMap::new()),
@@ -486,59 +613,6 @@ impl<T: tun::Tun, B: udp::UDP> Wireguard<T, B> {
}); });
} }
// start TUN read IO threads (multiple threads to support multi-queue interfaces)
debug_assert!(
readers.len() > 0,
"attempted to create WG device without TUN readers"
);
while let Some(reader) = readers.pop() {
let wg = wg.clone();
thread::spawn(move || loop {
// create vector big enough for any transport message (based on MTU)
let mtu = wg.mtu.load(Ordering::Relaxed);
let size = mtu + router::SIZE_MESSAGE_PREFIX;
let mut msg: Vec<u8> = Vec::with_capacity(size + router::CAPACITY_MESSAGE_POSTFIX);
msg.resize(size, 0);
// read a new IP packet
let payload = match reader.read(&mut msg[..], router::SIZE_MESSAGE_PREFIX) {
Ok(payload) => payload,
Err(e) => {
debug!("TUN worker, failed to read from tun device: {}", e);
return;
}
};
debug!("TUN worker, IP packet of {} bytes (MTU = {})", payload, mtu);
// TODO: start device down
if mtu == 0 {
continue;
}
// truncate padding
let padded = padding(payload, mtu);
log::trace!(
"TUN worker, payload length = {}, padded length = {}",
payload,
padded
);
msg.truncate(router::SIZE_MESSAGE_PREFIX + padded);
debug_assert!(padded <= mtu);
debug_assert_eq!(
if padded < mtu {
(msg.len() - router::SIZE_MESSAGE_PREFIX) % MESSAGE_PADDING_MULTIPLE
} else {
0
},
0
);
// crypt-key route
let e = wg.router.send(msg);
debug!("TUN worker, router returned {:?}", e);
});
}
Wireguard { Wireguard {
state: wg, state: wg,
runner: Runner::new(TIMERS_TICK, TIMERS_SLOTS, TIMERS_CAPACITY), runner: Runner::new(TIMERS_TICK, TIMERS_SLOTS, TIMERS_CAPACITY),