241 lines
7.8 KiB
TeX
241 lines
7.8 KiB
TeX
% !TeX spellcheck = en_US
|
|
\documentclass[
|
|
a4paper,
|
|
11pt,
|
|
BCOR=6mm,
|
|
footsepline,
|
|
plainfootsepline,
|
|
DIV=12,
|
|
listof=totoc,
|
|
]{scrartcl}
|
|
|
|
\usepackage{thesisstyle}
|
|
\usepackage{algpseudocodex}
|
|
\usepackage{multicol}
|
|
\usepackage{tabularx}
|
|
|
|
\begin{document}
|
|
\include{macros.tex}
|
|
|
|
\thispagestyle{empty}
|
|
|
|
|
|
\begin{center}
|
|
\textbf{\huge{\vspace{3em}\\
|
|
A formal Security Analysis of the EdDSA Signature Scheme
|
|
\vspace{3mm}
|
|
}}
|
|
|
|
\end{center}
|
|
|
|
\vspace{4em}
|
|
|
|
\begin{figure}[h]
|
|
\centering
|
|
\includegraphics{Logo_RUB_BLAU_4c}
|
|
\end{figure}
|
|
|
|
\vspace{4em}
|
|
|
|
\begin{center}\textbf{
|
|
{\Large{Ruhr-Universität Bochum\\}}
|
|
\vspace{2em}
|
|
{\large{Fakultät für Mathematik\\
|
|
\vspace{1em}
|
|
Lehrstuhl für Kryptographie}}\\
|
|
}
|
|
\vspace{8em}
|
|
{\Large{\textbf{
|
|
Masterarbeit
|
|
}}}\\
|
|
\vspace{1em}
|
|
{\textbf{von}}\\
|
|
\vspace{1em}
|
|
{\large\textbf{
|
|
Aaron Kaiser
|
|
}}\\
|
|
\end{center}
|
|
\newpage
|
|
|
|
\thispagestyle{empty} \newpage\
|
|
\thispagestyle{empty} \newpage\
|
|
|
|
|
|
|
|
\begin{abstract}
|
|
|
|
abstract
|
|
|
|
\end{abstract}
|
|
|
|
\newpage
|
|
|
|
\thispagestyle{empty} \newpage\
|
|
\thispagestyle{empty} \newpage\
|
|
|
|
\tableofcontents %Inhaltsverzeichnis
|
|
|
|
\thispagestyle{empty} \newpage\
|
|
\thispagestyle{empty} \newpage\
|
|
|
|
%Hauptteil der Arbeit
|
|
|
|
% TODO: Make citation links clickable
|
|
|
|
\section{Introduction}
|
|
|
|
Ed25519 is a signature scheme introduced by Bernstein, Duif, Lange, Schwabe, and Yang in 2012 \cite{JCEng:BDLSY12}. Ed25519 is a signature scheme defined for the Ed25519 twisted Edwards curve. In 2015 the paper "EdDSA for more curves" expanded the Ed25519 signature scheme to the more general EdDSA signature scheme \cite{EPRINT:BJLSY15}. Due to its high performance the EdDSA signature scheme is very popular and widely used in applications like TLS, SSH and the Signal protocol.
|
|
|
|
Despite the wide use of EdDSA there is little security analysis of this signature scheme. The EdDSA signature scheme is based on the Schnorr signature scheme, which uses the Fiat-Schamir transformation to create a signature scheme from a secure identification scheme. Even though the EdDSA scheme is close to the original Schnorr signature scheme the standard security proof of the Schnorr signature scheme does not apply. The paper "The Provable Security of Ed25519: Theory and Practice" by Brendel et al. shows the security of Ed25519 by extracting the underlying identification scheme and proofing the security of this scheme as well as the applied Fiat-Schamir transformation \cite{SP:BCJZ21}. Due to the use of the Reset Lemma this yields a non-tight security proof of the Ed25519 signature scheme.
|
|
|
|
This work uses a different approach to proof the security of the EdDSA signature scheme by using the Algebraic Group Model (AGM) to directly reduce the security of EdDSA signature scheme to a special variant of the discrete logarithm problem. This approach yields a tight security proof.
|
|
|
|
%TODO: result of thesis
|
|
TODO
|
|
|
|
\raggedbottom
|
|
|
|
\newpage
|
|
\section{Preliminaries}
|
|
|
|
\subsection{Schnorr Signatures}
|
|
|
|
\subsection{Edwards Curves}
|
|
|
|
\subsection{Security Notions}
|
|
|
|
\subsection{Random Oracle Model (ROM)}
|
|
|
|
\subsection{Algebraic Group Model (AGM)}
|
|
|
|
\subsection{Generic Group Model (GGM)}
|
|
|
|
\newpage
|
|
\section{EdDSA Signatures}
|
|
|
|
% TODO: Referenz zum ersten Paper 2011 oder lieber zum journal paper 2012?
|
|
|
|
This section takes a closer look at the existing specifications of the EdDSA signature scheme and specifies a version which will be analyzed in this thesis.
|
|
|
|
This work will take a closer look at the UF-CMA security of the EdDSA signature scheme. EdDSA was introduced as the Ed25519 signature scheme using the twisted Edwards curve Edwards25519, which is birationally equivalent to the Weierstrass curve Curve25519 \cite{JCEng:BDLSY12}. Later in 2015 the paper "EdDSA for more Curves" by Bernstein et al. introduces a more general version of EdDSA \cite{EPRINT:BJLSY15}. The paper also introduces a variant of EdDSA using prehashing. The RFC 8032 "Edwards-Curve Digital Signature Algorithm (EdDSA)" from 2017 specifies a version of EdDSA with the inclusion of an additional input parameter \textit{context} for the Sign and Verify procedure \cite{josefsson_edwards-curve_2017}. This version was also included into the FIPS 186-5 "Digital Signature Standard (DSS)" standard \cite{moody_digital_2023}.
|
|
|
|
In the prehashing variant of EdDSA the signature is calculated on the hash value of the message. The message is used twice during the generation of the signature. Thus the message needs to be buffered or transmitted twice during the generation of the signature. Therefore the prehashing variant offers an performance advantage on memory and bandwidth constraint devices. The context is an additional input parameter which has to be equal during generation and verification of the signature and is used to bind the signature to a given context.
|
|
|
|
\subsection{EdDSA Parameter}
|
|
|
|
The generic version of EdDSA from the "EdDSA for more Curves" paper, the RFC 8032 and the FIPS 186-5 standard is parameterized by the following 11 parameters \cite{EPRINT:BJLSY15} \cite{josefsson_edwards-curve_2017} \cite{moody_digital_2023}.
|
|
|
|
% TODO: Ist das ok hier einfach zu kopieren?
|
|
\begin{center}
|
|
\begin{table}[t]
|
|
\caption{text}
|
|
\label{tab:parameter}
|
|
\centering
|
|
\begin{tabularx}{\textwidth}{@{}lX@{}}
|
|
\textbf{Parameter} & \textbf{Description} \\
|
|
\hline
|
|
$q$ & An odd prime power $q$. EdDSA uses an elliptic curve over the finite field $\mathbb{F}_q$ \\
|
|
$b$ & An integer $b$ with $2^{b-1} > q$. EdDSA public keys have exactly b bits, and EdDSA signatures
|
|
have exactly 2b bits. $b$
|
|
\end{tabularx}
|
|
\end{table}
|
|
\end{center}
|
|
|
|
|
|
|
|
\begin{figure}
|
|
\caption{Generic description of the algorithms KeyGen, Sign and Verify used by the EdDSA signature scheme}
|
|
\label{fig:eddsa}
|
|
\hrule
|
|
\begin{multicols}{3}
|
|
\scriptsize
|
|
\begin{algorithmic}[1]
|
|
\Procedure{KeyGen}{}
|
|
\State $k \randomsample \{0,1\}^b$
|
|
\State $(h_0, h_1, ..., h_{2b-1}) \assign H(k)$
|
|
\State $s \leftarrow 2^n + \sum_{i=c}^{n-1} 2^i h_i$
|
|
\State $A \assign sB$
|
|
\State \Return (\encoded{$A$}, $k$)
|
|
\EndProcedure
|
|
\end{algorithmic}
|
|
\columnbreak
|
|
\begin{algorithmic}[1]
|
|
\Procedure{Sign}{$k$, $m$}
|
|
\State $(h_0, h_1, ..., h_{2b-1}) \assign H(k)$
|
|
\State $s \leftarrow 2^n + \sum_{i=c}^{n-1} 2^i h_i$
|
|
\State $(r'_0, r'_1, ..., r'_{2b-1}) \assign H(h_b | ... | b_{2b-1} | m)$
|
|
\State $r \assign \sum_{i=0}^{2b-1} 2^i r'_i$
|
|
\State $R \assign rB$
|
|
\State $S \assign (r + sH(\encoded{R} | \encoded{A} | m)) \pmod l$
|
|
\State \Return $\sigma \assign (\encoded{R}, S)$
|
|
\EndProcedure
|
|
\end{algorithmic}
|
|
\columnbreak
|
|
\begin{algorithmic}[1]
|
|
\Procedure{Verify}{$\encoded{A}, \sigma \assign (\encoded{R}, S), m$}
|
|
\State \Return $2^c SB \\= 2^c R + 2^c H(\encoded{R} | \encoded{A} | m)A$
|
|
\EndProcedure
|
|
\end{algorithmic}
|
|
\end{multicols}
|
|
\hrule
|
|
\end{figure}
|
|
|
|
|
|
\newpage
|
|
\section{Notation}
|
|
|
|
\section{The Security of EdDSA in a Single-User Setting}
|
|
|
|
\section{The Security of EdDSA in a Multi-User Setting}
|
|
|
|
\section{The Ed-GGM}
|
|
|
|
\subsection{Bounds on Dlog'}
|
|
|
|
\subsection{Bounds on OMDlog'}
|
|
|
|
\section{Concrete Security of EdDSA}
|
|
|
|
\section{Conclusion}
|
|
|
|
\newpage
|
|
|
|
\addcontentsline{toc}{section}{References}
|
|
\bibliographystyle{ieeetr}
|
|
\bibliography{cryptobib/abbrev0,cryptobib/crypto,./citation}
|
|
|
|
\newpage\
|
|
|
|
|
|
\newpage\
|
|
|
|
|
|
|
|
\section*{Ehrenwörtliche Erklärung}
|
|
\selectlanguage{ngerman}
|
|
\addcontentsline{toc}{section}{Ehrenwörtliche Erklärung}
|
|
|
|
\noindent
|
|
Hiermit versichere ich,
|
|
%Name
|
|
wohnhaft
|
|
%Adresse
|
|
dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe,
|
|
dass alle Stellen der Arbeit, die wörtlich oder sinngemäß aus anderen Quellen übernommen wurden, als solche kenntlich gemacht sind und dass die Arbeit in gleicher
|
|
oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegt wurde.
|
|
|
|
\vspace{4\baselineskip}
|
|
|
|
|
|
\noindent
|
|
%Ort
|
|
\today\hspace{5.19625cm}\underline{\hspace{5.9cm}}\\
|
|
\phantom{\hspace{11.5cm}}{\small{
|
|
%Name
|
|
}}
|
|
|
|
\newpage\
|
|
\thispagestyle{empty}
|
|
|
|
\end{document}
|