\subsection{\igame $=>$ UF-NMA (ROM)} This section shows that \igame implies the UF-NMA security if the EdDSA signature scheme using the Algebraic Group Model. The section starts by first providing an intuition if the proof followed by the detailed security proof. \begin{figure} \hrule \begin{multicols}{2} \large \begin{algorithmic}[1] \Statex \underline{\game \igame} \State \quad $a \randomsample \{2^{n-1}, 2^{n-1} + 8, ..., 2^n - 8\}$ \State \quad $\groupelement{A} \assign a \groupelement{B}$ \State \quad $s^* \randomsample \adversary{A}^{\ioracle(\inp)}(\groupelement{A})$ \State \quad \Return $\exists \groupelement{R}^*, \ch^*: \groupelement{R}^* = 2^c (s^* \groupelement{B} - \ch^* \groupelement{A}) \wedge (\groupelement{R}^*, \ch^*) \in Q$ \end{algorithmic} \columnbreak \begin{algorithmic}[1] \Statex \underline{\oracle \ioracle($\groupelement{R_i} \in \group{G}$)} \State \quad $\ch_i \randomsample \{0,1\}^{2b}$ \State \quad $Q \assign Q \cup \{ (\groupelement{R}_i, c_i) \}$ \State \quad \Return $\ch_i$ \end{algorithmic} \end{multicols} \hrule \caption{\igame} \label{game:igame} \end{figure}