\subsection{\igame $=>$ UF-NMA (ROM)} This section shows that \igame implies the UF-NMA security if the EdDSA signature scheme using the Algebraic Group Model. The section starts by first providing an intuition if the proof followed by the detailed security proof. \paragraph{\underline{Introducing \igame}} The intermediate game \igame is introduced to create a separation between proofs in the random oracle model and the algebraic group model. This is archived by replacing the random oracle by the \ioracle oracle, which takes a commitment and outputs a challenge. This also strips away the message and focuses on the forgery of an arbitrary message. The \igame game is depicted in figure \ref{game:igame}. \begin{definition}[\igame] For an adversary $\adversary{A}$ we define its advantage in the \igame game as following: \[ \advantage{\adversary{A}}{\igame}(k) \assign | \Pr[\igame^{\adversary{A}} \Rightarrow 1] | \]. \end{definition} \begin{figure} \hrule \begin{multicols}{2} \large \begin{algorithmic}[1] \Statex \underline{\game \igame} \State $a \randomsample \{2^{n-1}, 2^{n-1} + 8, ..., 2^n - 8\}$ \State $\groupelement{A} \assign a \groupelement{B}$ \State $s^* \randomsample \adversary{A}^{\ioracle(\inp)}(\groupelement{A})$ \State \Return $\exists \groupelement{R}^*, \ch^*: \groupelement{R}^* = 2^c s^* \groupelement{B} - 2^c \ch^* \groupelement{A} \wedge (\groupelement{R}^*, \ch^*) \in Q$ \end{algorithmic} \columnbreak \begin{algorithmic}[1] \Statex \underline{\oracle \ioracle($\groupelement{R_i} \in \group{G}$)} \State $\ch_i \randomsample \{0,1\}^{2b}$ \State $Q \assign Q \cup \{ (\groupelement{R}_i, \ch_i) \}$ \State \Return $\ch_i$ \end{algorithmic} \end{multicols} \hrule \caption{\igame} \label{game:igame} \end{figure} \begin{theorem} \label{theorem:adv_igame} Let $\adversary{A}$ be an adversary against $\text{UF-NMA}_{\text{EdDSA}}$. Then, \[ \advantage{\adversary{A}}{UF-NMA}(k) = \advantage{\adversary{B}}{\igame}(k) \]. \end{theorem} \paragraph{\underline{Proof Overview}} The adversary has to query the random oracle to get the hash value $H(\encoded{R} | \encoded{A} | m)$. The programmability of the random oracle can be used to embed the challenge from the \ioracle oracle into the answer of the random oracle. This way a valid forgery of a signature also provides a valid solution for the \igame game. \paragraph{\underline{Formal Proof}} \begin{figure} \hrule \begin{multicols}{2} \large \begin{algorithmic}[1] \State \underline{\game $G_0$} \State $(\m^*, \signature^*) \randomassign \adversary{A}^{H(\inp)}(\groupelement{A})$ \State \Return $\verify(\groupelement{A}, \m^*,\signature^*)$ \end{algorithmic} \columnbreak \begin{algorithmic}[1] \Statex \underline{\oracle $H(m \in \{0,1\}^*)$} \State $\textbf{if } \sum[m] = \bot \textbf{ then}$ \State \quad $\sum[m] \randomsample \{0,1\}^{2b}$ \State \Return $\sum[m]$ \end{algorithmic} \end{multicols} \hrule \caption{$G_0$} \label{fig:igame_implies_uf-nma} \end{figure} \begin{proof} \item \paragraph{\underline{$G_0$}} Let $G_0$ be defined in figure \ref{fig:igame_implies_uf-nma} and let $G_0$ be $\text{UF-NMA}_{\text{EdDSA}}$. By definition, \[ \advantage{\text{EdDSA}, \adversary{A}}{\text{UF-NMA}} = \Pr[\text{UF-NMA}_{\text{EdDSA}}^{\adversary{A}} \Rightarrow 1 ] = \Pr[G_0^{\adversary{A}} \Rightarrow 1] \]. \item $G_0$ is well prepared to show that there exists an adversary $\adversary{B}$ satisfying \begin{align} \Pr[G_0^{\adversary{A}} \Rightarrow 1] = \advantage{\group{G}, \adversary{B}}{\igame}(k) \label{eq:adv_igame} \end{align}. \begin{figure} \hrule \begin{multicols}{2} \large \begin{algorithmic}[1] \Statex \underline{\textbf{Adversary} $\adversary{B}^{\ioracle(\inp)}(\groupelement{A})$} \State $(\m^*, \signature^* \assign (\encoded{R}, S)) \randomassign \adversary{A}^{H(\inp)}(\groupelement{A})$ \State \Return $S$ \end{algorithmic} \columnbreak \begin{algorithmic}[1] \Statex \underline{\oracle $H(m \in \{0,1\}^*)$} \State $\textbf{if } \sum[m] = \bot \textbf{ then}$ \State \quad $\textbf{if } \encoded{R} | \encoded{A} | m' \assign m \wedge \groupelement{R} \in \curve \textbf{ then}$ \State \qquad $\sum[m] \randomsample \ioracle(2^c \groupelement{R})$ \State \quad \textbf{else} \State \qquad $\sum[m] \randomsample \{0,1\}^{2b}$ \State \Return $\sum[m]$ \end{algorithmic} \end{multicols} \hrule \caption{Adversary $\adversary{B}$ breaking \igame} \label{fig:adversary_igame} \end{figure} \item To proof (\ref{eq:adv_igame}), we define an adversary $\adversary{B}$ attacking \igame that simulates $\adversary{A}$'s view in $G_0$. Adversary $\adversary{B}$ formally defined in figure \ref{fig:adversary_igame} is run in the \igame game and adversary $\adversary{B}$ simulates the random oracle $H$ for the adversary $\adversary{A}$. $H$ is simulates perfectly. Finally, consider $\adversary{A}$'s output $(\m^*, \signature^* \assign (\encoded{R}, S))$. It is known that: \begin{align*} 2^c S \groupelement{B} &= 2^c \groupelement{R} + 2^c H(\encoded{R} | \encoded{A} | m) \groupelement{A} \\ 2^c \groupelement{R} &= 2^c S \groupelement{B} - 2^c H(\encoded{R} | \encoded{A} | m) \groupelement{A} \\ 2^c \groupelement{R} &= 2^c S \groupelement{B} - 2^c \ioracle(2^c \groupelement{R}) \groupelement{A} \\ \groupelement{R}' &= 2^c S \groupelement{B} - 2^c \ioracle(\groupelement{R}') \groupelement{A} \end{align*} Therefore $S$ is a valid solution for the \igame game. \item This proves theorem \ref{theorem:adv_igame}. \end{proof}