Rewrote introduction to multi-user proof and added info for Ehrenwörtliche Erklärung
This commit is contained in:
@@ -106,16 +106,16 @@ abstract
|
|||||||
|
|
||||||
This section takes a closer look at the single-user security of the EdDSA signature scheme. This is done by sowing the SUF-CMA and EUF-CMA security of EdDSA with different styles of signature parsing. The security is under the \sdlog assumption. The \sdlog assumption is a variation of the original discrete logarithm problem, which takes the key clamping during the key generation algorithm of EdDSA into account.
|
This section takes a closer look at the single-user security of the EdDSA signature scheme. This is done by sowing the SUF-CMA and EUF-CMA security of EdDSA with different styles of signature parsing. The security is under the \sdlog assumption. The \sdlog assumption is a variation of the original discrete logarithm problem, which takes the key clamping during the key generation algorithm of EdDSA into account.
|
||||||
|
|
||||||
The two main theorems for the single user security of $\text{EdDSA}_{\text{sp}}$ and $\text{EdDSA}_{\text{lp}}$ are:
|
The two main theorems for the single-user security of $\text{EdDSA}_{\text{sp}}$ and $\text{EdDSA}_{\text{lp}}$ are:
|
||||||
|
|
||||||
\begin{theorem}[Security of EdDSA with strict parsing in the single-user setting]
|
\begin{theorem}[Security of EdDSA with strict parsing in the single-user setting]
|
||||||
Let $\adversary{A}$ be an adversary against the SUF-CMA security of EdDSA with strict parsing, making at most $\hashqueries$ hash queries and $\oraclequeries$ oracle queries, and $\group{G}$ a group of prime order $L$. Then,
|
Let $\adversary{A}$ be an adversary against the SUF-CMA security of EdDSA with strict parsing, making at most $\hashqueries$ hash queries and $\oraclequeries$ oracle queries, and $\group{G}$ be a group of prime order $L$. Then,
|
||||||
|
|
||||||
\[ \advantage{\group{G}, \adversary{A}}{\text{SUF-CMA}}(\secparamter) \leq \advantage{\curve, n, c, L, \adversary{B}}{\sdlog} + \frac{2(\hashqueries + 1)}{2^b} + \frac{\oraclequeries \hashqueries + \oraclequeries}{2^{-\log_2(\lceil \frac{2^{2b} - 1}{L} \rceil 2^{-2b})}} \]
|
\[ \advantage{\group{G}, \adversary{A}}{\text{SUF-CMA}}(\secparamter) \leq \advantage{\curve, n, c, L, \adversary{B}}{\sdlog} + \frac{2(\hashqueries + 1)}{2^b} + \frac{\oraclequeries \hashqueries + \oraclequeries}{2^{-\log_2(\lceil \frac{2^{2b} - 1}{L} \rceil 2^{-2b})}} \]
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
|
||||||
\begin{theorem}[Security of EdDSA with lax parsing in the single-user setting]
|
\begin{theorem}[Security of EdDSA with lax parsing in the single-user setting]
|
||||||
Let $\adversary{A}$ be an adversary against the SUF-CMA security of EdDSA with lax parsing, making at most $\hashqueries$ hash queries and $\oraclequeries$ oracle queries, and $\group{G}$ a group of prime order $L$. Then,
|
Let $\adversary{A}$ be an adversary against the SUF-CMA security of EdDSA with lax parsing, making at most $\hashqueries$ hash queries and $\oraclequeries$ oracle queries, and $\group{G}$ be a group of prime order $L$. Then,
|
||||||
|
|
||||||
\[ \advantage{\group{G}, \adversary{A}}{\text{EUF-CMA}}(\secparamter) \leq \advantage{\curve, n, c, L, \adversary{B}}{\sdlog} + \frac{2(\hashqueries + 1)}{2^b} + \frac{\oraclequeries \hashqueries + \oraclequeries}{2^{-\log_2(\lceil \frac{2^{2b} - 1}{L} \rceil 2^{-2b})}} \]
|
\[ \advantage{\group{G}, \adversary{A}}{\text{EUF-CMA}}(\secparamter) \leq \advantage{\curve, n, c, L, \adversary{B}}{\sdlog} + \frac{2(\hashqueries + 1)}{2^b} + \frac{\oraclequeries \hashqueries + \oraclequeries}{2^{-\log_2(\lceil \frac{2^{2b} - 1}{L} \rceil 2^{-2b})}} \]
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
@@ -130,16 +130,31 @@ The chain of reductions can be depicted as:
|
|||||||
\input{sections/security_of_eddsa/gamez_implies_uf-nma}
|
\input{sections/security_of_eddsa/gamez_implies_uf-nma}
|
||||||
\input{sections/security_of_eddsa/dlog'_implies_gamez}
|
\input{sections/security_of_eddsa/dlog'_implies_gamez}
|
||||||
|
|
||||||
|
|
||||||
\section{The Security of EdDSA in a Multi-User Setting}
|
\section{The Security of EdDSA in a Multi-User Setting}
|
||||||
|
|
||||||
In this section the multi-user security of the EdDSA signature scheme will be analyzed. A common approach for Schnorr-like signature schemes is to show it via the Random Self-reducibility property of the canonical identification scheme as done in \cite{C:KilMasPan16}. This approach does not work with the EdDSA signature scheme, since the reduction is not able to rerandomize a public key in a way preserving the distribution of the key generation algorithm. This is due to the fact that valid public key always have to have the n-th bit set. Therefore, a similar approach to the single-user setting is used. It is not possible to reduce the \sdlog problem directly since the adversary gets multiple public keys and therefore might not provide a representation of the commitment looking like $\groupelement{R} = r_1 \groupelement{B} + r_2 \groupelement{A}$. For this reason a variant of the one-more discrete logarithm assumption (OMDL) has to be used as introduced in \cite{JC:BNPS03}.
|
In this section the multi-user security of the EdDSA signature scheme will be analyzed. A common approach for Schnorr-like signature schemes is to show it via the Random Self-reducibility property of the canonical identification scheme as done in \cite{C:KilMasPan16}. This approach does not work with the EdDSA signature scheme, since the reduction is not able to rerandomize a public key in a way preserving the distribution of the key generation algorithm. This is due to the fact that valid public key always has to have the n-th bit set.
|
||||||
|
|
||||||
|
Therefore, a similar approach to the proof in the single-user setting is used. It is not possible to reduce the \sdlog problem directly since the adversary gets multiple public keys and therefore might not provide a representation of the commitment looking like $\groupelement{R} = r_1 \groupelement{B} + r_2 \groupelement{A}$, which was needed for the discrete logarithm of the public key to be calculated. For this reason a variant of the one-more discrete logarithm assumption (OMDL) has to be used, as introduced in \cite{JC:BNPS03}.
|
||||||
|
|
||||||
The proof starts by showing that the MU-UF-NMA security of EdDSA implies MU-SUF-CMA security of EdDSA in the Random Oracle Model. Next an intermediate game is introduced onto which the MU-UF-NMA security of EdDSA is reduced. At last, the security of the intermediate game is reduced onto the security of the variant of the one-more discrete logarithm assumption.
|
The proof starts by showing that the MU-UF-NMA security of EdDSA implies MU-SUF-CMA security of EdDSA in the Random Oracle Model. Next an intermediate game is introduced onto which the MU-UF-NMA security of EdDSA is reduced. At last, the security of the intermediate game is reduced onto the security of the variant of the one-more discrete logarithm assumption.
|
||||||
|
|
||||||
|
The two main theorems for the multi-user security of $\text{EdDSA}_{\text{sp}}$ and $\text{EdDSA}_{\text{lp}}$ are:
|
||||||
|
|
||||||
|
\begin{theorem}[Security of EdDSA with strict parsing in the multi-user setting]
|
||||||
|
Let $\adversary{A}$ be an adversary against the MU-SUF-CMA security of EdDSA with strict parsing, receiving $N$ public keys and making at most $\hashqueries$ hash queries and $\oraclequeries$ oracle queries, and $\group{G}$ be a group of prime order $L$. Then,
|
||||||
|
|
||||||
|
\[ \advantage{\group{G}, \adversary{A}}{\text{MU-SUF-CMA}}(\secparamter) \leq \advantage{\curve, n, c, L, \adversary{B}}{\somdl} + \frac{2(\hashqueries + 1)}{2^b} + \frac{\oraclequeries \hashqueries + \oraclequeries N}{2^{-\log_2(\lceil \frac{2^{2b} - 1}{L} \rceil 2^{-2b})}} \]
|
||||||
|
\end{theorem}
|
||||||
|
|
||||||
|
\begin{theorem}[Security of EdDSA with lax parsing in the multi-user setting]
|
||||||
|
Let $\adversary{A}$ be an adversary against the MU-EUF-CMA security of EdDSA with lax parsing, receiving $N$ public keys and making at most $\hashqueries$ hash queries and $\oraclequeries$ oracle queries, and $\group{G}$ be a group of prime order $L$. Then,
|
||||||
|
|
||||||
|
\[ \advantage{\group{G}, \adversary{A}}{\text{MU-EUF-CMA}}(\secparamter) \leq \advantage{\curve, n, c, L, \adversary{B}}{\somdl} + \frac{2(\hashqueries + 1)}{2^b} + \frac{\oraclequeries \hashqueries + \oraclequeries N}{2^{-\log_2(\lceil \frac{2^{2b} - 1}{L} \rceil 2^{-2b})}} \]
|
||||||
|
\end{theorem}
|
||||||
|
|
||||||
The chain of reductions can be depicted as:
|
The chain of reductions can be depicted as:
|
||||||
|
|
||||||
\[ \somdl \Rightarrow \text{MU-}\igame \Rightarrow \text{MU-UF-NMA} \Rightarrow \text{MU-SUF-CMA} \]
|
\[ \somdl \overset{\text{AGM}}{\Rightarrow} \igame \overset{\text{ROM}}{\Rightarrow} \text{MU-UF-NMA} \overset{\text{ROM}}{\Rightarrow} MU-\cma_{\text{EdDSA sp}} / \text{MU-EUF-CMA}_{\text{EdDSA lp}} \]
|
||||||
|
|
||||||
\input{sections/mu_security_of_eddsa/mu-uf-nma_implies_mu-suf-cma}
|
\input{sections/mu_security_of_eddsa/mu-uf-nma_implies_mu-suf-cma}
|
||||||
\input{sections/mu_security_of_eddsa/mu-gamez_implies_mu-uf-nma}
|
\input{sections/mu_security_of_eddsa/mu-gamez_implies_mu-uf-nma}
|
||||||
@@ -171,9 +186,10 @@ The chain of reductions can be depicted as:
|
|||||||
\noindent
|
\noindent
|
||||||
Hiermit versichere ich,
|
Hiermit versichere ich,
|
||||||
%Name
|
%Name
|
||||||
|
Aaron Kaiser
|
||||||
wohnhaft
|
wohnhaft
|
||||||
%Adresse
|
%Adresse
|
||||||
dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe,
|
Universitätsstr. 110, 44799 Bochum, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe,
|
||||||
dass alle Stellen der Arbeit, die wörtlich oder sinngemäß aus anderen Quellen übernommen wurden, als solche kenntlich gemacht sind und dass die Arbeit in gleicher
|
dass alle Stellen der Arbeit, die wörtlich oder sinngemäß aus anderen Quellen übernommen wurden, als solche kenntlich gemacht sind und dass die Arbeit in gleicher
|
||||||
oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegt wurde.
|
oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegt wurde.
|
||||||
|
|
||||||
@@ -182,9 +198,11 @@ oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegt wurde.
|
|||||||
|
|
||||||
\noindent
|
\noindent
|
||||||
%Ort
|
%Ort
|
||||||
|
Bochum,
|
||||||
\today\hspace{5.19625cm}\underline{\hspace{5.9cm}}\\
|
\today\hspace{5.19625cm}\underline{\hspace{5.9cm}}\\
|
||||||
\phantom{\hspace{11.5cm}}{\small{
|
\phantom{\hspace{11.5cm}}{\small{
|
||||||
%Name
|
%Name
|
||||||
|
Aaron Kaiser
|
||||||
}}
|
}}
|
||||||
|
|
||||||
\newpage\
|
\newpage\
|
||||||
|
|||||||
Reference in New Issue
Block a user