Formalized schmemes
This commit is contained in:
@@ -1,8 +1,77 @@
|
||||
\subsection{Security Notions}
|
||||
\subsection{Identical-Until-Bad Games}
|
||||
|
||||
\subsubsection{Identical-Until-Bad Games}
|
||||
\subsection{Canonical Identification Scheme}
|
||||
|
||||
\subsubsection{Digital Signature Scheme}
|
||||
A canonical identification scheme (CID), as defined in \cite{EC:AABN02}, is a protocol between two parties. The prover tries to proof the knowledge of a secret key to the verfier which only knows the public key. This is achieved by exchanging three messages between the two parties. At first the prover starts the protocol by sending a commitment $R$ to the verifier. The verifer answers with a random challenge $\ch$ from a predefined challenge set $\textbf{CHSet}$. The prover then uses the commitment, challenge and its secret key to calculate a response $s$. The verifier then can use the commitment, challenge and response together with the public key of the prover to verify the response and thereby whether the prover is actually in the possession of the private key.
|
||||
|
||||
\begin{definition}[CID]
|
||||
A canonical identification scheme $\text{CID} = (\keygen, P, V)$ is a tuple of algorithms.
|
||||
|
||||
\begin{itemize}[label={}]
|
||||
\item \textbf{\keygen}: The key generation algorithm, which upon receiving the schema parameter as an input outputs a matching tuple of public and private key.
|
||||
\item \textbf{P}: A set of two algorithms $P_1$ and $P_2$. $P_1$ receives the private key as input and outputs a set containing the commitment and a state. $P_2$ receives as input the secret key, the commitment, the challenge and the state and outputs the response.
|
||||
\item \textbf{V}: V is the verification algorithm which upon receiving the public key, the commitment, the challenge and the response outputs a bit representing whether the response is valid for the set of parameters.
|
||||
\end{itemize}
|
||||
|
||||
For the canonical identification scheme to be correct it is required that $\forall (\pubkey, \privkey) \in \keygen(par), (R, st) \in P_1(\privkey), \ch \in \textbf{CHSet}, s \in P_2(\privkey, R, \ch, st): V(\pubkey, R, \ch, s) = 1$.
|
||||
\end{definition}
|
||||
|
||||
\subsubsection{IMP-PA}
|
||||
|
||||
On security notion for a canonical identification scheme is the impersonation security against passive attackers (IMP-PA). For this security notion the adversary is tasked with impersonating the prover by outputting a valid solution $s$ for a randomly chosen challenge $\ch$ but allowing to request an arbitrary amount of valid transcripts from the challenger. The accompanying game is depicted in figure \ref{game:imp-pa}.
|
||||
|
||||
\begin{figure}[h]
|
||||
\hrule
|
||||
\begin{multicols}{2}
|
||||
\normalsize
|
||||
\begin{algorithmic}[1]
|
||||
\Statex \underline{\game $\text{IMP-PA}$}
|
||||
\State $(\pubkey, \privkey) \randomassign \keygen(1^\secparamter)$
|
||||
\State $s^* \randomassign \adversary{A}^{Tran, Ch(\inp)}(\pubkey)$
|
||||
\State \Return $\exists (R^*, \ch^*) \in Q: V(\pubkey, R^*, \ch^*, s^*) \test 1$
|
||||
\end{algorithmic}
|
||||
\columnbreak
|
||||
\begin{algorithmic}[1]
|
||||
\Statex \underline{\oracle Ch($R^*$)}
|
||||
\Comment{one query}
|
||||
\State $\ch^* \randomassign \textbf{CHSet}$
|
||||
\State $Q \assign \{(R^*, \ch^*)\}$
|
||||
\State \Return $\ch^*$
|
||||
\end{algorithmic}
|
||||
\end{multicols}
|
||||
\begin{algorithmic}[1]
|
||||
\Statex \underline{\oracle Tran}
|
||||
\State $(R, st) \randomassign P_1(\privkey)$
|
||||
\State $\ch \randomsample \textbf{CHSet}$
|
||||
\State $s \assign P_2(\privkey, R, \ch, st)$
|
||||
\State \Return $(R, \ch, s)$
|
||||
\end{algorithmic}
|
||||
\hrule
|
||||
\caption{IMP-PA Security Game}
|
||||
\label{game:imp-pa}
|
||||
\end{figure}
|
||||
|
||||
\begin{definition}[IMP-PA]
|
||||
Let $\text{CID} = (\keygen, P, V)$ be a canonical signature scheme. \textit{CID} is IMP-PA secure if for all ppt adversaries $\adversary{A}$ $\advantage{\textit{CID},\adversary{A}}{\text{IMP-PA}}(\secparamter)$ is negligible in $\secparamter$.
|
||||
|
||||
\[ \advantage{\textit{CID},\adversary{A}}{\text{IMP-PA}}(\secparamter) \assign \prone{\text{IMP-PA}^{\adversary{A}}} \leq \epsilon \]
|
||||
\end{definition}
|
||||
|
||||
\subsection{Digital Signature Scheme}
|
||||
|
||||
A digital signature scheme is a method to ensure the authenticity of data. The signer, which is in the possession of a private key, generates a signature for specific message. The verifier then is able to verify the authenticity of this data using the public key and the generated signature.
|
||||
|
||||
\begin{definition}
|
||||
A digital signature scheme SIG = (\keygen,\sign,\verify) is a tuple of algorithms.
|
||||
|
||||
\begin{itemize}[label={}]
|
||||
\item \textbf{\keygen}: The key generation algorithm, which upon receiving the schema parameter as input outputs a matching tuple of public and private key.
|
||||
\item \textbf{\sign}: The signature algorithm, which upon receiving the secret key and the message outputs a signature for that message.
|
||||
\item \textbf{\verify}: The verification algorithm, which upon receiving the public key, the message and the signature decides whether the signature is valid for the specific set of input parameters.
|
||||
\end{itemize}
|
||||
|
||||
For the digital signature scheme to be correct it is required that $\forall (\pubkey, \privkey) \in \keygen(par), \m \in \messagespace, \signature \in \sign(\privkey, \m): \verify(\pubkey, \m, \signature) = 1$
|
||||
\end{definition}
|
||||
|
||||
\subsubsection{\cma}
|
||||
|
||||
@@ -66,33 +135,30 @@ Unforgeability against No Message Attack (UF-NMA) is a security notion for digit
|
||||
|
||||
MU-SUF-CMA is the multi-user variant of the SUF-CMA security notion. Instead of one public key the attacker gets $n$ public keys and is able to query signatures for arbitrary messages for any of the public keys. The goal of the adversary is to forge a signature for any of the public keys. The game is depicted in figure \ref{game:mu-suf-cma}.
|
||||
|
||||
%TODO: Parameter in definition (e.g. n-MU_SUF-CMA)
|
||||
\begin{definition}[MU-SUF-CMA]
|
||||
Let $SIG = (\keygen, \sign, \verify)$ be a digital signature scheme and $n$ be an integer. $SIG$ is n-MU-SUF-CMA secure if for all ppt adversaries $\adversary{A}$ the $\advantage{SIG,\adversary{A}}{\text{MU-SUF-CMA}}(\secparamter)$ is negligible in $\secparamter$.
|
||||
|
||||
\[ \advantage{SIG,\adversary{A}}{\text{MU-SUF-CMA}}(\secparamter) \assign \prone{\text{MU-SUF-CMA}^{\adversary{A}}} \leq \epsilon \]
|
||||
\end{definition}
|
||||
|
||||
\begin{figure}
|
||||
\begin{figure}[h]
|
||||
\hrule
|
||||
\begin{multicols}{2}
|
||||
\normalsize
|
||||
\begin{algorithmic}[1]
|
||||
\Statex \underline{\game $\text{MU-SUF-CMA}$}
|
||||
\State \textbf{for} $i \in \{1,2,...,n\}$
|
||||
\State \quad $(\pubkey_i, \privkey_i) \randomassign \keygen(1^\secparamter)$
|
||||
\State $(\m^*, \signature^*) \randomassign \adversary{A}^{\sign(\inp, \inp)}(\pubkey_1, \pubkey_2, ..., \pubkey_n)$
|
||||
\State \Return $\exists i \in \{1,2,...,n\}: \verify(\pubkey_i, \m^*, \signature^*) \test 1 \wedge (\pubkey_i, \m^*, \signature^*) \notin M$
|
||||
% TODO: Fix formatation
|
||||
\end{algorithmic}
|
||||
\columnbreak
|
||||
\begin{algorithmic}[1]
|
||||
\Statex \underline{\oracle \Osign($i \in \{1,2,...,n\}$, $\m \in \messagespace$)}
|
||||
\State $\signature \randomassign \sign(\privkey_i, \m)$
|
||||
\State $M \assign M \cup \{(\pubkey_i, \m, \signature)\}$
|
||||
\State \Return $\signature$
|
||||
\end{algorithmic}
|
||||
\end{multicols}
|
||||
\normalsize
|
||||
\vspace{1mm}
|
||||
\begin{algorithmic}[1]
|
||||
\Statex \underline{\game $\text{MU-SUF-CMA}$}
|
||||
\State \textbf{for} $i \in \{1,2,...,n\}$
|
||||
\State \quad $(\pubkey_i, \privkey_i) \randomassign \keygen(1^\secparamter)$
|
||||
\State $(\m^*, \signature^*) \randomassign \adversary{A}^{\sign(\inp, \inp)}(\pubkey_1, \pubkey_2, ..., \pubkey_n)$
|
||||
\State \Return $\exists i \in \{1,2,...,n\}: \verify(\pubkey_i, \m^*, \signature^*) \test 1 \wedge (\pubkey_i, \m^*, \signature^*) \notin M$
|
||||
\end{algorithmic}
|
||||
\vspace{2mm}
|
||||
\begin{algorithmic}[1]
|
||||
\Statex \underline{\oracle \Osign($i \in \{1,2,...,n\}$, $\m \in \messagespace$)}
|
||||
\State $\signature \randomassign \sign(\privkey_i, \m)$
|
||||
\State $M \assign M \cup \{(\pubkey_i, \m, \signature)\}$
|
||||
\State \Return $\signature$
|
||||
\end{algorithmic}
|
||||
\hrule
|
||||
\caption{MU-SUF-CMA Security Game}
|
||||
\label{game:mu-suf-cma}
|
||||
@@ -108,7 +174,7 @@ MU-UF-NMA is the multi-user variant of the UF-NMA security notion. Instead of o
|
||||
\[ \advantage{SIG,\adversary{A}}{\text{MU-UF-NMA}}(\secparamter) \assign \prone{\text{MU-UF-NMA}^{\adversary{A}}} \leq \epsilon \]
|
||||
\end{definition}
|
||||
|
||||
\begin{figure}
|
||||
\begin{figure}[h]
|
||||
\hrule
|
||||
\vspace{1mm}
|
||||
\begin{algorithmic}[1]
|
||||
|
||||
Reference in New Issue
Block a user