simplified equations
This commit is contained in:
@@ -19,7 +19,7 @@ A common security notion for digital signature schemes is the existential unforg
|
||||
\begin{definition}[MU-EUF-CMA]
|
||||
Let $SIG = (\keygen, \sign, \verify)$ be a digital signature scheme and $N$ be an integer. Let the N-MU-EUF-CMA game be defined in figure \ref{game:mu-euf-cma}. $SIG$ is N-MU-EUF-CMA secure if for all ppt adversaries $\adversary{A}$, we have
|
||||
|
||||
\[ \advantage{SIG,\adversary{A}}{\textsf{N-MU-EUF-CMA}}(\secparamter) \assign \prone{\textsf{N-MU-EUF-CMA}^{\adversary{A}}} \leq negl(\secparamter). \]
|
||||
\[ \advantage{SIG,\adversary{A}}{\textsf{$N$-MU-EUF-CMA}}(\secparamter) \assign \prone{\textsf{$N$-MU-EUF-CMA}^{\adversary{A}}} \leq negl(\secparamter). \]
|
||||
\end{definition}
|
||||
|
||||
\begin{figure}[h]
|
||||
@@ -27,7 +27,7 @@ A common security notion for digital signature schemes is the existential unforg
|
||||
\normalsize
|
||||
\vspace{1mm}
|
||||
\begin{algorithmic}
|
||||
\Statex \underline{\game $\text{N-MU-EUF-CMA}$}
|
||||
\Statex \underline{\game $\text{$N$-MU-EUF-CMA}$}
|
||||
\State \textbf{for} $i \in \{1,2,...,N\}$
|
||||
\State \quad $(\pubkey_i, \privkey_i) \randomassign \keygen(1^\secparamter)$
|
||||
\State $(\m^*, \signature^*) \randomassign \adversary{A}^{\sign(\inp, \inp)}(\pubkey_1, \pubkey_2, ..., \pubkey_n)$
|
||||
@@ -41,14 +41,14 @@ A common security notion for digital signature schemes is the existential unforg
|
||||
\State \Return $\signature$
|
||||
\end{algorithmic}
|
||||
\hrule
|
||||
\caption{N-MU-EUF-CMA Security Game}
|
||||
\caption{$N$-MU-EUF-CMA Security Game}
|
||||
\label{game:mu-euf-cma}
|
||||
\end{figure}
|
||||
|
||||
\begin{definition}[MU-SUF-CMA]
|
||||
Let $SIG = (\keygen, \sign, \verify)$ be a digital signature scheme and $N$ be an integer. Let the MU-SUF-CMA game be defined in figure \ref{game:mu-suf-cma}. $SIG$ is MU-SUF-CMA secure if for all ppt adversaries $\adversary{A}$, we have
|
||||
|
||||
\[ \advantage{SIG,\adversary{A}}{\textsf{N-MU-SUF-CMA}}(\secparamter) \assign \prone{\textsf{N-MU-SUF-CMA}^{\adversary{A}}} \leq negl(\secparamter). \]
|
||||
\[ \advantage{SIG,\adversary{A}}{\textsf{$N$-MU-SUF-CMA}}(\secparamter) \assign \prone{\textsf{$N$-MU-SUF-CMA}^{\adversary{A}}} \leq negl(\secparamter). \]
|
||||
\end{definition}
|
||||
|
||||
\begin{figure}[h]
|
||||
@@ -56,7 +56,7 @@ A common security notion for digital signature schemes is the existential unforg
|
||||
\normalsize
|
||||
\vspace{1mm}
|
||||
\begin{algorithmic}
|
||||
\Statex \underline{\game $\text{N-MU-SUF-CMA}$}
|
||||
\Statex \underline{\game $\text{$N$-MU-SUF-CMA}$}
|
||||
\State \textbf{for} $i \in \{1,2,...,N\}$
|
||||
\State \quad $(\pubkey_i, \privkey_i) \randomassign \keygen(1^\secparamter)$
|
||||
\State $(\m^*, \signature^*) \randomassign \adversary{A}^{\sign(\inp, \inp)}(\pubkey_1, \pubkey_2, ..., \pubkey_n)$
|
||||
@@ -70,7 +70,7 @@ A common security notion for digital signature schemes is the existential unforg
|
||||
\State \Return $\signature$
|
||||
\end{algorithmic}
|
||||
\hrule
|
||||
\caption{N-MU-SUF-CMA Security Game}
|
||||
\caption{$N$-MU-SUF-CMA Security Game}
|
||||
\label{game:mu-suf-cma}
|
||||
\end{figure}
|
||||
|
||||
@@ -79,21 +79,21 @@ The MU-EUF-NMA security game is similar to the MU-EUF-CMA game. The only differe
|
||||
\begin{definition}[MU-EUF-NMA]
|
||||
Let $SIG = (\keygen, \sign, \verify)$ be a digital signature scheme and $N$ be an integer. Let the N-MU-EUF-NMA game be defined in figure \ref{game:mu-uf-nma}. $SIG$ is N-MU-EUF-NMA secure if for all ppt adversaries $\adversary{A}$, we have
|
||||
|
||||
\[ \advantage{SIG,\adversary{A}}{\textsf{N-MU-EUF-NMA}}(\secparamter) \assign \prone{\textsf{N-MU-EUF-NMA}^{\adversary{A}}} \leq negl(\secparamter). \]
|
||||
\[ \advantage{SIG,\adversary{A}}{\textsf{$N$-MU-EUF-NMA}}(\secparamter) \assign \prone{\textsf{$N$-MU-EUF-NMA}^{\adversary{A}}} \leq negl(\secparamter). \]
|
||||
\end{definition}
|
||||
|
||||
\begin{figure}[h]
|
||||
\hrule
|
||||
\vspace{1mm}
|
||||
\begin{algorithmic}
|
||||
\State \underline{\game $\text{N-MU-EUF-NMA}$}
|
||||
\State \underline{\game $\text{$N$-MU-EUF-NMA}$}
|
||||
\State \textbf{for} $i \in \{1,2,...,N\}$
|
||||
\State \quad $(\pubkey_i, \privkey_i) \randomassign \keygen(1^\secparamter)$
|
||||
\State $(\m^*, \signature^*) \randomassign \adversary{A}(\pubkey_1, \pubkey_2, \pubkey_n)$
|
||||
\State \Return $\exists i \in \{1,2,...,N\}: \verify(\pubkey_i, \m^*, \signature^*) \test 1$
|
||||
\end{algorithmic}
|
||||
\hrule
|
||||
\caption{N-MU-EUF-NMA Security Game}
|
||||
\caption{$N$-MU-EUF-NMA Security Game}
|
||||
\label{game:mu-uf-nma}
|
||||
\end{figure}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user