Removed line numbers in figures
This commit is contained in:
@@ -24,7 +24,7 @@ This method of simulating the \Osign oracle and the resulting loss of advantage
|
||||
\begin{figure}
|
||||
\hrule
|
||||
\vspace{1mm}
|
||||
\begin{algorithmic}[1]
|
||||
\begin{algorithmic}
|
||||
\Statex \underline{\simalg(\groupelement{A})}
|
||||
\State $\textbf{ch} \randomsample \{0,1\}^{2b}$
|
||||
\State $s \randomsample \{0,1\}^{2b}$
|
||||
@@ -41,7 +41,7 @@ This method of simulating the \Osign oracle and the resulting loss of advantage
|
||||
\hrule
|
||||
\begin{multicols}{2}
|
||||
\large
|
||||
\begin{algorithmic}[1]
|
||||
\begin{algorithmic}
|
||||
\Statex \underline{\game $G_0$ / \textcolor{blue}{$G_1$} / \textcolor{red}{$G_2$} / \textcolor{green}{$G_3$}}
|
||||
\State $(h_0, h_1, ..., h_{2b-1}) \randomsample \{0,1\}^{2b}$
|
||||
\State $s \leftarrow 2^n + \sum_{i=c}^{n-1} 2^i h_i$
|
||||
@@ -50,7 +50,7 @@ This method of simulating the \Osign oracle and the resulting loss of advantage
|
||||
\State \Return $\verify(\groupelement{A}, \m^*,\signature^*) \wedge (\m^*, \signature^*) \notin \pset{Q}$
|
||||
\end{algorithmic}
|
||||
\columnbreak
|
||||
\begin{algorithmic}[1]
|
||||
\begin{algorithmic}
|
||||
\Statex \underline{\oracle \sign($\m \in \messagespace$)}
|
||||
\Comment{$G_0 - G_2$}
|
||||
\State $(r'_0, r'_1, ..., r'_{2b-1}) = RF(h_b | ... | h_{2b-1} | \m)$
|
||||
@@ -78,14 +78,14 @@ This method of simulating the \Osign oracle and the resulting loss of advantage
|
||||
\end{algorithmic}
|
||||
\end{multicols}
|
||||
\begin{multicols}{2}
|
||||
\begin{algorithmic}[1]
|
||||
\begin{algorithmic}
|
||||
\Statex \underline{\oracle $H(\m \in \{0,1\}^*)$}
|
||||
\State $\textbf{if } \sum[\m] = \bot \textbf{ then}$
|
||||
\State \quad $\sum[\m] \randomsample \{0,1\}^{2b}$
|
||||
\State \Return $\sum[\m]$
|
||||
\end{algorithmic}
|
||||
\columnbreak
|
||||
\begin{algorithmic}[1]
|
||||
\begin{algorithmic}
|
||||
%TODO: Nummer vor Oracle
|
||||
\BeginBox[draw=green]
|
||||
\State \underline{\oracle \sign($\m \in \messagespace$)}
|
||||
@@ -135,13 +135,13 @@ This method of simulating the \Osign oracle and the resulting loss of advantage
|
||||
\hrule
|
||||
\begin{multicols}{2}
|
||||
\large
|
||||
\begin{algorithmic}[1]
|
||||
\begin{algorithmic}
|
||||
\Statex \underline{\textbf{Adversary} $\adversary{B}^{H(\inp)}(\groupelement{A})$}
|
||||
\State $(\m^*, \signature^*) \randomassign \adversary{A}^{H'(\inp), \sign(\inp)}(\groupelement{A})$
|
||||
\State \Return $(\m^*, \signature^*)$
|
||||
\end{algorithmic}
|
||||
\columnbreak
|
||||
\begin{algorithmic}[1]
|
||||
\begin{algorithmic}
|
||||
\Statex \underline{\oracle \sign($m \in \messagespace$)}
|
||||
\State $(R,\textbf{ch},S) \randomassign \simalg(\groupelement{A})$
|
||||
\State $\textbf{if } \sum[\encoded{R} | \encoded{A} | m] \neq \bot \textbf{ then}$
|
||||
@@ -153,7 +153,7 @@ This method of simulating the \Osign oracle and the resulting loss of advantage
|
||||
\State \Return $\signature$
|
||||
\end{algorithmic}
|
||||
\end{multicols}
|
||||
\begin{algorithmic}[1]
|
||||
\begin{algorithmic}
|
||||
\Statex \underline{\oracle $H'(m \in \{0,1\}^*)$}
|
||||
\State $\textbf{if } \sum[m] = \bot \textbf{ then}$
|
||||
\State \quad $\sum[m] \assign H(m)$
|
||||
@@ -203,7 +203,7 @@ This section shows that the UF-NMA security of EdDSA implies the EUF-CMA securit
|
||||
\hrule
|
||||
\begin{multicols}{2}
|
||||
\large
|
||||
\begin{algorithmic}[1]
|
||||
\begin{algorithmic}
|
||||
\Statex \underline{\textbf{Adversary} $\adversary{B}^{H(\inp)}(\groupelement{A})$}
|
||||
\State $(\m^*, \signature^*) \randomassign \adversary{A}^{H'(\inp), \sign(\inp)}(\groupelement{A})$
|
||||
\State \Return $(\m^*, \signature^*)$
|
||||
@@ -221,7 +221,7 @@ This section shows that the UF-NMA security of EdDSA implies the EUF-CMA securit
|
||||
\State \Return $\signature$
|
||||
\end{algorithmic}
|
||||
\end{multicols}
|
||||
\begin{algorithmic}[1]
|
||||
\begin{algorithmic}
|
||||
\Statex \underline{\oracle $H'(m \in \{0,1\}^*)$}
|
||||
\State $\textbf{if } \sum[m] = \bot \textbf{ then}$
|
||||
\State \quad $\sum[m] \assign H(m)$
|
||||
|
||||
Reference in New Issue
Block a user