Removed line numbers in figures
This commit is contained in:
@@ -37,7 +37,7 @@ The EdDSA signature scheme is depicted in figure \ref{fig:eddsa}.
|
||||
\hrule
|
||||
\begin{multicols}{3}
|
||||
\scriptsize
|
||||
\begin{algorithmic}[1]
|
||||
\begin{algorithmic}
|
||||
\Statex \underline{\textbf{\keygen}}
|
||||
\State $k \randomsample \{0,1\}^b$
|
||||
\State $(h_0, h_1, ..., h_{2b-1}) \assign H(k)$
|
||||
@@ -46,7 +46,7 @@ The EdDSA signature scheme is depicted in figure \ref{fig:eddsa}.
|
||||
\State \Return (\encoded{$A$}, $k$)
|
||||
\end{algorithmic}
|
||||
\columnbreak
|
||||
\begin{algorithmic}[1]
|
||||
\begin{algorithmic}
|
||||
\Statex \underline{\textbf{\sign}($k$, $m$)}
|
||||
\State $(h_0, h_1, ..., h_{2b-1}) \assign H(k)$
|
||||
\State $s \leftarrow 2^n + \sum_{i=c}^{n-1} 2^i h_i$
|
||||
@@ -57,7 +57,7 @@ The EdDSA signature scheme is depicted in figure \ref{fig:eddsa}.
|
||||
\State \Return $\sigma \assign (\encoded{R}, S)$
|
||||
\end{algorithmic}
|
||||
\columnbreak
|
||||
\begin{algorithmic}[1]
|
||||
\begin{algorithmic}
|
||||
\Statex \underline{\textbf{\verify}($\encoded{A}, \sigma \assign (\encoded{R}, S), m$)}
|
||||
\State \Return $2^c SB \test 2^c R + 2^c H(\encoded{R} | \encoded{A} | m)A$
|
||||
\end{algorithmic}
|
||||
@@ -129,7 +129,7 @@ The EdDSA' signature scheme is shown in figure \ref{fig:eddsa'}. The difference
|
||||
\hrule
|
||||
\begin{multicols}{3}
|
||||
\scriptsize
|
||||
\begin{algorithmic}[1]
|
||||
\begin{algorithmic}
|
||||
\Statex \underline{\textbf{\keygen}}
|
||||
\State $(h_0, h_1, ..., h_{2b-1}) \randomsample \{0,1\}^{2b}$
|
||||
\State $s \leftarrow 2^n + \sum_{i=c}^{n-1} 2^i h_i$
|
||||
@@ -137,7 +137,7 @@ The EdDSA' signature scheme is shown in figure \ref{fig:eddsa'}. The difference
|
||||
\State \Return (\encoded{$A$}, $k \assign (s, h_b | ... | h_{2b-1})$)
|
||||
\end{algorithmic}
|
||||
\columnbreak
|
||||
\begin{algorithmic}[1]
|
||||
\begin{algorithmic}
|
||||
\Statex \underline{\textbf{\sign}($k \assign (s, h_b | ... | h_{2b-1})$, $m$)}
|
||||
\State $(r'_0, r'_1, ..., r'_{2b-1}) \assign RF(h_b | ... | h_{2b-1} | m)$
|
||||
\State $r \assign \sum_{i=0}^{2b-1} 2^i r'_i$
|
||||
@@ -146,7 +146,7 @@ The EdDSA' signature scheme is shown in figure \ref{fig:eddsa'}. The difference
|
||||
\State \Return $\sigma \assign (\encoded{R}, S)$
|
||||
\end{algorithmic}
|
||||
\columnbreak
|
||||
\begin{algorithmic}[1]
|
||||
\begin{algorithmic}
|
||||
\Statex \underline{\textbf{\verify}($\encoded{A}, \sigma \assign (\encoded{R}, S), m$)}
|
||||
\State \Return $2^c SB \test 2^c R + 2^c H(\encoded{R} | \encoded{A} | m)A$
|
||||
\end{algorithmic}
|
||||
@@ -173,7 +173,7 @@ The different games used in the proof are depicted in figure \ref{fig:eddsa'game
|
||||
\hrule
|
||||
\begin{multicols}{2}
|
||||
\large
|
||||
\begin{algorithmic}[1]
|
||||
\begin{algorithmic}
|
||||
\Statex \underline{\game $G_0$ / \textcolor{blue}{$G_1$} / \textcolor{red}{$G_2$} / \textcolor{green}{$G_3$} / \textcolor{orange}{$G_4$}}
|
||||
\State $k \randomsample \{0,1\}^b$
|
||||
\BeginBox[draw=black]
|
||||
@@ -196,7 +196,7 @@ The different games used in the proof are depicted in figure \ref{fig:eddsa'game
|
||||
\State \Return $\verify(A, \m^*,\signature^*) \wedge (\m^*, \signature^*) \notin \pset{Q}$
|
||||
\end{algorithmic}
|
||||
\columnbreak
|
||||
\begin{algorithmic}[1]
|
||||
\begin{algorithmic}
|
||||
\Statex \underline{\oracle \sign($m \in \messagespace$)}
|
||||
\BeginBox[draw=black]
|
||||
\State $(r'_0, r'_1, ..., r'_{2b-1}) \assign H(h_b | ... | h_{2b-1} | m)$
|
||||
@@ -220,7 +220,7 @@ The different games used in the proof are depicted in figure \ref{fig:eddsa'game
|
||||
\State \Return $\signature$
|
||||
\end{algorithmic}
|
||||
\end{multicols}
|
||||
\begin{algorithmic}[1]
|
||||
\begin{algorithmic}
|
||||
\Statex \underline{\oracle $H(m \in \{0,1\}^*)$}
|
||||
\BeginBox[draw=blue]
|
||||
\State $\textbf{if } m = k \textbf{ then}$
|
||||
|
||||
Reference in New Issue
Block a user