finished first version of proofs
This commit is contained in:
@@ -7,7 +7,7 @@ This section shows that the UF-NMA security of EdDSA signature scheme implies th
|
||||
\label{theorem:adv_uf-nma}
|
||||
Let $\adversary{A}$ be an adversary against $\cma$, making at most $\hashqueries$ hash queries and $\oraclequeries$ oracle queries. Then,
|
||||
|
||||
\[ \advantage{\adversary{A}}{\text{\cma}}(\secparamter) = \advantage{\adversary{B}}{\text{UF-NMA}}(\secparamter) - \frac{\oraclequeries \hashqueries}{2^{-\log_2(\lceil \frac{2^{2b} - 1}{L} \rceil 2^{-2b})}} \].
|
||||
\[ \advantage{\adversary{A}}{\text{\cma}}(\secparamter) = \advantage{\adversary{B}}{\text{UF-NMA}}(\secparamter) - \frac{\oraclequeries \hashqueries}{2^{-\log_2(\lceil \frac{2^{2b} - 1}{L} \rceil 2^{-2b})}}. \]
|
||||
\end{theorem}
|
||||
|
||||
\paragraph{\underline{Proof Overview}} The UF-NMA security definition is close to the security definition of \cma but is missing the \Osign oracle. To show that UF-NMA security implies \cma security the reduction has to simulate the \Osign oracle without the knowledge of the private key.
|
||||
@@ -117,25 +117,25 @@ The proof starts by providing an algorithm which generates correctly distributed
|
||||
|
||||
\item \paragraph{\underline{$G_2:$}} $G_2$ also includes the abort instruction in the red box. The abort condition is triggered if the $bad$ flag is set. Without loss of generality it is assumed that the adversary queries the \sign oracle only once with each message since the signature generated is deterministic and an adversary would not gain more information by multiple queries with the same message. For each individual sign query the probability for the $bad$ flag to be set is at most $\frac{\hashqueries}{2^{-\log_2(\lceil \frac{2^{2b} - 1}{L} \rceil 2^{-2b})}}$. The only parameter, which is unknown to the adversary prior to calling the \sign oracle is the commitment $R$. For an adversary to trigger the abort condition he has to guess the commitment $\groupelement{R}$ used during on of the \sign queries. $-\log_2(\lceil \frac{2^{2b} - 1}{L} \rceil 2^{-2b})$ is the min entropy of $\groupelement{R}$. $r'$ is chosen uniformly at random from $\{0,1\}^{2b}$ and then reduced modulo $L$ when multiplied with the generator $\groupelement{B}$. At first there are $2^{2b}$ possible values for $r'$. After the reduction module $L$ there are $min\{2^{2b}, L\}$ possible values left for $r'$. In the case that the values $L$ is smaller than $2^{2b}$ (this is the case in most instantiations of EdDSA) then the $r'$'s are not uniformly distributed in $\field{L}$. Since an adversary could use this information the min entropy of $\groupelement{R}$ has to be considered, which takes this into account. By the Union bound over all oracle queries $\oraclequeries$ we obtain $\Pr[bad] \leq \frac{\oraclequeries \hashqueries}{2^{-\log_2(\lceil \frac{2^{2b} - 1}{L} \rceil 2^{-2b})}}$. Since $G_1$ and $G_2$ are identical-until-bad games, we have
|
||||
|
||||
\[ |\Pr[G_1^{\adversary{A}} \Rightarrow 1] - \Pr[G_2^{\adversary{A}} \Rightarrow 1]| \leq \Pr[bad] \leq \frac{\oraclequeries \hashqueries}{2^{-\log_2(\lceil \frac{2^{2b} - 1}{L} \rceil 2^{-2b})}} \].
|
||||
\[ |\Pr[G_1^{\adversary{A}} \Rightarrow 1] - \Pr[G_2^{\adversary{A}} \Rightarrow 1]| \leq \Pr[bad] \leq \frac{\oraclequeries \hashqueries}{2^{-\log_2(\lceil \frac{2^{2b} - 1}{L} \rceil 2^{-2b})}}. \]
|
||||
|
||||
\item \paragraph{\underline{$G_3:$}} $G_3$ replaces the \sign oracle by the \sign oracle in the green box. This change is only conceptual. \simalg outputs a correctly distributed tuple $(R, \textbf{ch}, S)$ with $2^c S \groupelement{B} = 2^c \groupelement{R} + 2^c \textbf{ch} \groupelement{A}$ and it was ruled out that $H(\encoded{R} | \encoded{A} | \m)$ is set prior to calling the \sign oracle the random oracle can be programmed to output $\textbf{ch}$ upon calling $H(\encoded{R} | \encoded{A} | m)$. Therefore, it is ensured that $2^c S \groupelement{B} = 2^c \groupelement{R} + 2^c H(\encoded{R} | \encoded{A} | \m) \groupelement{A}$, which means that $\signature \assign (\encoded{R}, S)$ is a valid signature for the message $\m$ and was generated without the usage of the private key $s$. Therefore,
|
||||
|
||||
\[ \Pr[G_2^{\adversary{A}} \Rightarrow 1] = \Pr[G_3^{\adversary{A}} \Rightarrow 1] \].
|
||||
\[ \Pr[G_2^{\adversary{A}} \Rightarrow 1] = \Pr[G_3^{\adversary{A}} \Rightarrow 1]. \]
|
||||
|
||||
\item Finally, Game $G_3$ is well prepared to show that there exists an adversary $\adversary{B}$ satisfying
|
||||
|
||||
\begin{align}
|
||||
\Pr[G_3^{\adversary{A}} \Rightarrow 1] = \advantage{\adversary{B}}{\text{UF-NMA}}(\secparamter) \label{eq:adv_uf-nma}
|
||||
\end{align}.
|
||||
\Pr[G_3^{\adversary{A}} \Rightarrow 1] = \advantage{\adversary{B}}{\text{UF-NMA}}(\secparamter). \label{eq:adv_uf-nma}
|
||||
\end{align}
|
||||
|
||||
\begin{figure}
|
||||
\hrule
|
||||
\begin{multicols}{2}
|
||||
\large
|
||||
\begin{algorithmic}[1]
|
||||
\Statex \underline{\textbf{Adversary} $\adversary{B}(\groupelement{A})$}
|
||||
\State $(\m^*, \signature^*) \randomassign \adversary{A}^{H(\inp), \sign(\inp)}(\groupelement{A})$
|
||||
\Statex \underline{\textbf{Adversary} $\adversary{B}^{H(\inp)}(\groupelement{A})$}
|
||||
\State $(\m^*, \signature^*) \randomassign \adversary{A}^{H'(\inp), \sign(\inp)}(\groupelement{A})$
|
||||
\State \Return $(\m^*, \signature^*)$
|
||||
\end{algorithmic}
|
||||
\columnbreak
|
||||
@@ -152,9 +152,9 @@ The proof starts by providing an algorithm which generates correctly distributed
|
||||
\end{algorithmic}
|
||||
\end{multicols}
|
||||
\begin{algorithmic}[1]
|
||||
\Statex \underline{\oracle $H(m \in \{0,1\}^*)$}
|
||||
\Statex \underline{\oracle $H'(m \in \{0,1\}^*)$}
|
||||
\State $\textbf{if } \sum[m] = \bot \textbf{ then}$
|
||||
\State \quad $\sum[m] \randomsample \{0,1\}^{2b}$
|
||||
\State \quad $\sum[m] \assign H(m)$
|
||||
\State \Return $\sum[m]$
|
||||
\end{algorithmic}
|
||||
\hrule
|
||||
@@ -164,8 +164,14 @@ The proof starts by providing an algorithm which generates correctly distributed
|
||||
|
||||
To prove (\ref{eq:adv_uf-nma}), we define an adversary $\adversary{B}$ attacking $\text{UF-NMA}$ that simulates $\adversary{A}$'s view in $G_3$. Adversary $\adversary{B}$ formally defined in figure \ref{fig:adversarybuf-nma} is run in the $\text{UF-NMA}$ game and adversary $\adversary{B}$ simulates \Osign for adversary $\adversary{A}$. \Osign is simulated perfectly.
|
||||
|
||||
% TODO: Ist die Begründung ausreichend?
|
||||
Finally, consider $\adversary{A}$ output $(\m^*, \signature^*)$. Every valid signature outputted by adversary $\adversary{A}$ in the $\text{\cma}$ setting is also a valid signature in the $\text{UF-NMA}$ setting.
|
||||
Finally, consider $\adversary{A}$ output $(\m^*, \signature^* \assign (\encoded{R}, S))$. It is known that $2^c S \groupelement{B} = 2^c \groupelement{R} + 2^c H'(\encoded{R}|\encoded{A}|m) \groupelement{A}$. Since the signature for the message $\m^*$ has not been queried in the \Osign oracle the output of $H'(\encoded{R}|\encoded{A}|m)$ has not been set by the adversary $\adversary{B}$ but was forwarded from the $H$ hash oracle. For this reason $H'(\encoded{R}|\encoded{A}|m) = H(\encoded{R}|\encoded{A}|m)$. Therefore,
|
||||
|
||||
\begin{align*}
|
||||
2^c S \groupelement{B} &= 2^c \groupelement{R} + 2^c H'(\encoded{R}|\encoded{A}|m) \groupelement{A}\\
|
||||
\Leftrightarrow 2^c S \groupelement{B} &= 2^c \groupelement{R} + 2^c H(\encoded{R}|\encoded{A}|m) \groupelement{A}.
|
||||
\end{align*}
|
||||
|
||||
Meaning that the forged signature from adversary $\adversary{A}$ is also a valid signature in the UF-NMA game.
|
||||
|
||||
\item This proves theorem \ref{theorem:adv_uf-nma}.
|
||||
\end{proof}
|
||||
Reference in New Issue
Block a user