finished first version of proofs
This commit is contained in:
@@ -8,7 +8,7 @@ This section shows that MU-\igame implies MU-UF-NMA security of the EdDSA signat
|
||||
\begin{definition}[MU-\igame]
|
||||
Let $n$ and $N$ be positive integers. For an adversary $\adversary{A}$ we define its advantage in the MU-\igame as following:
|
||||
|
||||
\[ \advantage{\adversary{A}}{\text{MU-\igame}}(\secparamter) \assign | \Pr[\text{MU-\igame}^{\adversary{A}} \Rightarrow 1] | \].
|
||||
\[ \advantage{\adversary{A}}{\text{MU-\igame}}(\secparamter) \assign | \Pr[\text{MU-\igame}^{\adversary{A}} \Rightarrow 1] |. \]
|
||||
\end{definition}
|
||||
|
||||
\begin{figure}
|
||||
@@ -75,13 +75,13 @@ This section shows that MU-\igame implies MU-UF-NMA security of the EdDSA signat
|
||||
\begin{proof}
|
||||
\item Let $G_0$ be defined in figure \ref{fig:mu-igame_implies_mu-uf-nma} and $G_0$ be MU-UF-NMA. By definition,
|
||||
|
||||
\[ \advantage{\text{EdDSA}, \adversary{A}}{\text{MU-UF-NMA}}(\secparamter) = \Pr[\text{MU-UF-NMA}^{\adversary{A}} \Rightarrow 1 ] = \Pr[G_0^{\adversary{A}} \Rightarrow 1] \].
|
||||
\[ \advantage{\text{EdDSA}, \adversary{A}}{\text{MU-UF-NMA}}(\secparamter) = \Pr[\text{MU-UF-NMA}^{\adversary{A}} \Rightarrow 1 ] = \Pr[G_0^{\adversary{A}} \Rightarrow 1]. \]
|
||||
|
||||
\item $G_0$ is well-prepared to show that there exists an adversary $\adversary{B}$ satisfying
|
||||
|
||||
\begin{align}
|
||||
\Pr[G_0^{\adversary{A}} \Rightarrow 1] = \advantage{\group{G}, \adversary{B}}{\text{MU-\igame}}(\secparamter) \label{eq:adv_mu-igame}
|
||||
\end{align}.
|
||||
\Pr[G_0^{\adversary{A}} \Rightarrow 1] = \advantage{\group{G}, \adversary{B}}{\text{MU-\igame}}(\secparamter). \label{eq:adv_mu-igame}
|
||||
\end{align}
|
||||
|
||||
\begin{figure}
|
||||
\hrule
|
||||
@@ -113,8 +113,8 @@ This section shows that MU-\igame implies MU-UF-NMA security of the EdDSA signat
|
||||
|
||||
\begin{align*}
|
||||
2^c S \groupelement{B} &= 2^c \groupelement{R} + 2^c H(\encoded{R} | \encoded{A_i} | m) \groupelement{A_i} \\
|
||||
2^c \groupelement{R} &= 2^c S \groupelement{B} - 2^c H(\encoded{R} | \encoded{A_i} | m) \groupelement{A_i} \\
|
||||
2^c \groupelement{R} &= 2^c S \groupelement{B} - 2^c \ioracle(2^c \groupelement{R}) \groupelement{A_i} \\
|
||||
\Leftrightarrow 2^c \groupelement{R} &= 2^c S \groupelement{B} - 2^c H(\encoded{R} | \encoded{A_i} | m) \groupelement{A_i} \\
|
||||
\Leftrightarrow 2^c \groupelement{R} &= 2^c S \groupelement{B} - 2^c \ioracle(2^c \groupelement{R}) \groupelement{A_i} \\
|
||||
\groupelement{R}' &= 2^c S \groupelement{B} - 2^c \ioracle(\groupelement{R}') \groupelement{A_i}
|
||||
\end{align*}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user