Fixed presentation

This commit is contained in:
2023-06-29 09:29:52 +02:00
parent f4b4c94061
commit 331422ca21
2 changed files with 90 additions and 14 deletions

Binary file not shown.

View File

@@ -20,6 +20,8 @@
\include{../thesis/macros}
\renewcommand{\somdl}{\text{Ed-$N$-DLog-Reveal}\xspace}
\begin{document}
\frame{\titlepage}
@@ -32,7 +34,7 @@
\item Related work
\item Preliminaries
\item The EdDSA signature scheme
\item Singe- and multi-user Proofs for EdDSA
\item Singe- and multi-user proofs for EdDSA
\item GGM proofs of the underlying assumptions
\item Concrete security
\end{enumerate}
@@ -55,8 +57,8 @@
Results of this thesis:
\begin{enumerate}
\item EdDSA is tightly secure under Ed-DLog assumption in the single-user setting
\item EdDSA is tightly secure under the N-Ed-DLog-Reveal assumption in the multi-user setting
\item EdDSA is tightly secure under \sdlog assumption in the single-user setting
\item EdDSA is tightly secure under the \somdl assumption in the multi-user setting
\item \textcolor{gray}{Ed25519 provides 125/124 bits of security in the single/multi-user setting}
\item \textcolor{gray}{Ed448 provides 221/220 bits of security in the single/multi-user setting}
\end{enumerate}
@@ -68,8 +70,8 @@
Results of this thesis:
\begin{enumerate}
\item EdDSA is tightly secure under Ed-DLog assumption in the single-user setting
\item EdDSA is tightly secure under the N-Ed-DLog-Reveal assumption in the multi-user setting
\item EdDSA is tightly secure under \sdlog assumption in the single-user setting
\item EdDSA is tightly secure under the \somdl assumption in the multi-user setting
\item Ed25519 provides 125/124 bits of security in the single/multi-user setting
\item Ed448 provides 221/220 bits of security in the single/multi-user setting
\end{enumerate}
@@ -90,7 +92,7 @@
\begin{frame}
\frametitle{Motivation}
No existing tight security proof since publication in 2015
No existing tight security proof since publication in 2011
\end{frame}
\begin{frame}
@@ -137,7 +139,7 @@
\end{algorithmic}
\vspace{2mm}
\begin{algorithmic}
\Statex \underline{\oracle \Osign($i \in \{1,2,...,n\}$, $\m \in \messagespace$)}
\Statex \underline{\oracle \Osign($i \in \{1,2,...,N\}$, $\m \in \messagespace$)}
\State $\signature \randomassign \sign(\privkey_i, \m)$
\State $M \assign M \cup \{(\pubkey_i, \m)\}$
\State \Return $\signature$
@@ -165,7 +167,7 @@
\end{algorithmic}
\vspace{2mm}
\begin{algorithmic}
\Statex \underline{\oracle \Osign($i \in \{1,2,...,n\}$, $\m \in \messagespace$)}
\Statex \underline{\oracle \Osign($i \in \{1,2,...,N\}$, $\m \in \messagespace$)}
\State $\signature \randomassign \sign(\privkey_i, \m)$
\State $M \assign M \cup \{(\pubkey_i, \m, \signature)\}$
\State \Return $\signature$
@@ -620,7 +622,7 @@
\begin{theorem}[Security of EdDSA with lax parsing in the multi-user setting]
\label{theorem:eddsa_lp_mu}
Let $\adversary{A}$ be an adversary against the MU-EUF-CMA security of EdDSA with lax parsing, receiving $N$ public keys and making at most $\hashqueries$ hash queries and $\oraclequeries$ oracle queries, and $\group{G}$ be a group of prime order $L$. Then,
Let $\adversary{A}$ be an adversary against the $N$-MU-EUF-CMA security of EdDSA with lax parsing, receiving $N$ public keys and making at most $\hashqueries$ hash queries and $\oraclequeries$ oracle queries, and $\group{G}$ be a group of prime order $L$. Then,
\[ \advantage{\group{G}, \adversary{A}}{\text{MU-EUF-CMA}}(\secparamter) \leq \advantage{\curve, n, c, L, \adversary{B}}{\somdl} + \frac{2(\hashqueries + 1)}{2^b} + \frac{\oraclequeries \hashqueries + \oraclequeries N}{2^{-\log_2(\lceil \frac{2^{2b} - 1}{L} \rceil 2^{-2b})}} \]
\end{theorem}
@@ -629,13 +631,57 @@
\begin{frame}
\frametitle{Multi-User Security}
\[ \somdl \overset{\text{AGM}}{\Rightarrow} \igame \overset{\text{ROM}}{\Rightarrow} \text{MU-EUF-NMA} \overset{\text{ROM}}{\Rightarrow} \text{MU-\cma}_{\text{EdDSA sp}} \]
\[ \somdl \overset{\text{AGM}}{\Rightarrow} \igame \overset{\text{ROM}}{\Rightarrow} \text{MU-EUF-NMA} \overset{\text{ROM}}{\Rightarrow} \text{MU-EUF-CMA}_{\text{EdDSA lp}} \]
\begin{itemize}
\item $\text{MU-EUF-NMA} \overset{\text{ROM}}{\Rightarrow} \text{MU-\cma}_{\text{EdDSA sp}}$
\item $\text{MU-EUF-NMA} \overset{\text{ROM}}{\Rightarrow} \text{MU-EUF-CMA}_{\text{EdDSA lp}}$
\item $\somdl \overset{\text{AGM}}{\Rightarrow} \text{$N$-\igame} \overset{\text{ROM}}{\Rightarrow} \text{MU-EUF-NMA}$
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Multi-User Security}
\framesubtitle{$\somdl \overset{\text{AGM}}{\Rightarrow} \igame$}
\framesubtitle{$\somdl \overset{\text{AGM}}{\Rightarrow} \text{$N$-\igame}$}
\begin{theorem}
\label{theorem:adv_omdl'}
Let $\adversary{A}$ be an adversary against \text{$N$-\igame} with $\group{G}$ being a cyclic group of prime order $L$, receiving $N$ public keys and making at most $\oraclequeries$ oracle queries. Then
\[ \advantage{\group{G},\adversary{A}}{\text{$N$-\igame}}(\secparamter) \leq \advantage{\group{G},\adversary{B}}{\somdl}(\secparamter) + \frac{\oraclequeries N}{2^{-\log_2(\lceil \frac{2^{2b} - 1}{L} \rceil 2^{-2b})}}. \]
\end{theorem}
\end{frame}
\begin{frame}
\frametitle{Multi-User Security}
\framesubtitle{$\somdl \overset{\text{AGM}}{\Rightarrow} \text{$N$-\igame}$}
\begin{figure}[h]
\hrule
\vspace{1mm}
\large
\begin{algorithmic}
\Statex \underline{\game \text{$N$-\igame}}
\State \textbf{for} $i \in \{1,2,...,N\}$
\State \quad $a_i \randomsample \{2^{n-1}, 2^{n-1} + 2^c, ..., 2^n - 2^c\}$
\State \quad $\groupelement{A_i} \assign a_i \groupelement{B}$
\State $s^* \randomsample \adversary{A}^{\ioracle(\inp)}(\groupelement{A_1}, \groupelement{A_2}, ..., \groupelement{A_N})$
\State \Return $\exists (\groupelement{R}^*, \ch^*) \in \pset{Q}, i \in \{1,2,...,N\} \in : \groupelement{R}^* = 2^c s^* \groupelement{B} - 2^c \ch^* \groupelement{A_i}$
\end{algorithmic}
\vspace{2mm}
\begin{algorithmic}
\Statex \underline{\oracle \ioracle($\groupelement{R_i} \in \group{G}$)}
\State $\ch_i \randomsample \{0,1\}^{2b}$
\State $\pset{Q} \assign \pset{Q} \cup \{ (\groupelement{R}_i, \ch_i) \}$
\State \Return $\ch_i$
\end{algorithmic}
\hrule
\caption{\text{$N$-\igame}}
\label{game:mu-igame}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Multi-User Security}
\framesubtitle{$\somdl \overset{\text{AGM}}{\Rightarrow} \text{$N$-\igame}$}
\begin{figure}[h]
\hrule
@@ -665,7 +711,7 @@
\begin{frame}
\frametitle{Multi-User Security}
\framesubtitle{$\somdl \overset{\text{AGM}}{\Rightarrow} \igame$}
\framesubtitle{$\somdl \overset{\text{AGM}}{\Rightarrow} \text{$N$-\igame}$}
Proof Idea:
@@ -700,6 +746,8 @@
\end{frame}
\begin{frame}
\frametitle{\somdl}
\begin{lemma}[Schwartz-Zippel lemma \cite{schwartz_fast_1980}]
Let $L$ be a prime number and $P \in \mathbb{F}_{L}[X_1, ..., X_n]$ be a non-zero polynomial of total degree $d \geq 0$ over a field $\mathbb{F}_{L}$. Let $S$ be a finite subset of $\mathbb{F}_{L}$ and let $x$ be selected uniformly at random from $S$. Then
@@ -708,6 +756,8 @@
\end{frame}
\begin{frame}
\frametitle{\somdl}
\begin{figure}[H]
\hrule
\tiny
@@ -744,6 +794,8 @@
\end{frame}
\begin{frame}
\frametitle{\somdl}
\begin{figure}[H]
\hrule
\tiny
@@ -784,6 +836,8 @@
\end{frame}
\begin{frame}
\frametitle{\somdl}
\begin{figure}[H]
\hrule
\tiny
@@ -828,6 +882,8 @@
\end{frame}
\begin{frame}
\frametitle{\somdl}
\begin{figure}[H]
\hrule
\vspace{2mm}
@@ -857,6 +913,8 @@
\end{frame}
\begin{frame}
\frametitle{\somdl}
\begin{figure}[H]
\hrule
\tiny
@@ -906,6 +964,8 @@
\end{frame}
\begin{frame}
\frametitle{\somdl}
\begin{figure}[H]
\hrule
\tiny
@@ -949,6 +1009,8 @@
\end{frame}
\begin{frame}
\frametitle{\somdl}
\begin{figure}[H]
\hrule
\tiny
@@ -1022,6 +1084,20 @@
\end{align*}
\end{frame}
\begin{frame}
\frametitle{Concrete Security}
\framesubtitle{Ed25519}
\begin{align*}
SR(\adversary{A}) &\leq \frac{\advantage{\group{G}, \adversary{A}}{\text{MU-SUF-CMA}}(\secparamter)}{Time(\adversary{A})} \\
&\leq \frac{\advantage{\curve, n, c, L, \adversary{A}}{\somdl} + \frac{2(\hashqueries + 1)}{2^b} + \frac{\oraclequeries \hashqueries + \oraclequeries N}{2^{-\log_2(\lceil \frac{2^{2b} - 1}{L} \rceil 2^{-2b})}}}{Time(\adversary{A})} \\
&\leq \frac{\frac{2(\groupqueries + N + 2)^2 + 1}{2^{n-1-c}} + \frac{2(\hashqueries + 1)}{2^b} + \frac{\oraclequeries \hashqueries + \oraclequeries N}{2^{-\log_2(\lceil \frac{2^{2b} - 1}{L} \rceil 2^{-2b})}}}{Time(\adversary{A})} \\
&\leq \frac{2 (2^{125} + 2^{35} + 2)^2 + 1}{2^{250} 2^{125}} + \frac{2(2^{125} + 1)}{2^{256} 2^{125}} + \frac{2^{64} 2^{125} + 2^{64} 2^{35}}{2^{252} 2^{125}} \\
&\approx 2^{-124} + 2^{-316} + 2^{-189} \\
&\approx 2^{-124}
\end{align*}
\end{frame}
\begin{frame}
\huge
\centering
@@ -1029,7 +1105,7 @@
Questions?
\end{frame}
\begin{frame}
\begin{frame}[allowframebreaks]
\bibliographystyle{ieeetr}
\bibliography{../thesis/cryptobib/abbrev0,../thesis/cryptobib/crypto,../thesis/citation}
\end{frame}