used uniform font for sets

This commit is contained in:
2023-05-15 10:12:44 +02:00
parent 66ab947000
commit 048dd04b86
7 changed files with 31 additions and 31 deletions

View File

@@ -75,7 +75,7 @@ The commitment is chosen as the result of a hash function instead of uniformly a
\begin{tabularx}{\textwidth}{@{}lX@{}}
\textbf{Parameter} & \textbf{Description} \\
\hline
$q$ & An odd prime power $q$. EdDSA uses an elliptic curve over the finite field $\field{q}$. \\
$q$ & An odd prime power $q$. EdDSA uses an elliptic curve over the finite field $\mathbb{F}_{q}$. \\
$b$ & An integer $b$ with $2^{b-1} > q$. The bit size of encoded points on the twisted Edwards curve. \\
$Enc(\inp)$ & A $(b-1)$-bit encoding of elements in the underlying finite field. \\
$H(\inp)$ & A cryptographic hash function producing $2b$-bit output. \\
@@ -203,7 +203,7 @@ The different games used in the proof are depicted in figure \ref{fig:eddsa'game
\State $s \leftarrow 2^n + \sum_{i=c}^{n-1} 2^i h_i$
\State $A \assign sB$
\State $(\m^*, \signature^*) \randomassign \adversary{A}^{H(\inp), \sign(\inp)}(A)$
\State \Return $\verify(A, \m^*,\signature^*) \wedge (\m^*, \signature^*) \notin Q$
\State \Return $\verify(A, \m^*,\signature^*) \wedge (\m^*, \signature^*) \notin \pset{Q}$
\end{algorithmic}
\columnbreak
\begin{algorithmic}[1]
@@ -226,7 +226,7 @@ The different games used in the proof are depicted in figure \ref{fig:eddsa'game
\State $R \assign rB$
\State $S \assign (r + sH(\encoded{R} | \encoded{A} | m)) \pmod L$
\State $\signature \assign (\encoded{R}, S)$
\State $Q \assign Q \cup \{(\m, \signature)\}$
\State $\pset{Q} \assign \pset{Q} \cup \{(\m, \signature)\}$
\State \Return $\signature$
\end{algorithmic}
\end{multicols}