Added concrete security
This commit is contained in:
@@ -111,13 +111,13 @@ The two main theorems for the single user security of $\text{EdDSA}_{\text{sp}}$
|
||||
\begin{theorem}[Security of EdDSA with strict parsing in the single-user setting]
|
||||
Let $\adversary{A}$ be an adversary against the SUF-CMA security of EdDSA with strict parsing, making at most $\hashqueries$ hash queries and $\oraclequeries$ oracle queries, and $\group{G}$ a group of prime order $L$. Then,
|
||||
|
||||
\[ \advantage{\group{G}, \adversary{A}}{\text{SUF-CMA}}(\secparamter) \leq \advantage{\group{G}, \adversary{B}}{\sdlog}(\secparamter) + \frac{2(\hashqueries + 1)}{2^b} + \frac{\oraclequeries \hashqueries + \oraclequeries}{2^{-\log_2(\lceil \frac{2^{2b} - 1}{L} \rceil 2^{-2b})}} \]
|
||||
\[ \advantage{\group{G}, \adversary{A}}{\text{SUF-CMA}}(\secparamter) \leq \advantage{\curve, n, c, L, \adversary{B}}{\sdlog} + \frac{2(\hashqueries + 1)}{2^b} + \frac{\oraclequeries \hashqueries + \oraclequeries}{2^{-\log_2(\lceil \frac{2^{2b} - 1}{L} \rceil 2^{-2b})}} \]
|
||||
\end{theorem}
|
||||
|
||||
\begin{theorem}[Security of EdDSA with lax parsing in the single-user setting]
|
||||
Let $\adversary{A}$ be an adversary against the SUF-CMA security of EdDSA with lax parsing, making at most $\hashqueries$ hash queries and $\oraclequeries$ oracle queries, and $\group{G}$ a group of prime order $L$. Then,
|
||||
|
||||
\[ \advantage{\group{G}, \adversary{A}}{\text{EUF-CMA}}(\secparamter) \leq \advantage{\group{G}, \adversary{B}}{\sdlog}(\secparamter) + \frac{2(\hashqueries + 1)}{2^b} + \frac{\oraclequeries \hashqueries + \oraclequeries}{2^{-\log_2(\lceil \frac{2^{2b} - 1}{L} \rceil 2^{-2b})}} \]
|
||||
\[ \advantage{\group{G}, \adversary{A}}{\text{EUF-CMA}}(\secparamter) \leq \advantage{\curve, n, c, L, \adversary{B}}{\sdlog} + \frac{2(\hashqueries + 1)}{2^b} + \frac{\oraclequeries \hashqueries + \oraclequeries}{2^{-\log_2(\lceil \frac{2^{2b} - 1}{L} \rceil 2^{-2b})}} \]
|
||||
\end{theorem}
|
||||
|
||||
The proof begins by showing that the UF-NMA security of EdDSA implies the SUF-CMA/EUF-CMA security of EdDSA with different types of parsing in the random oracle model. With this step, subsequent proofs can be performed without worrying about signature generation, and a unified chain of reduction can be used to prove the security of EdDSA with both parsing variants. Next, an algebraic intermediate game \igame is introduced. This intermediate game serves as a separation for proofs in the random oracle model and those in the algebraic group model. Finally, the intermediate game \igame is reduced to the special discrete logarithm variant \sdlog.
|
||||
@@ -147,9 +147,9 @@ The chain of reductions can be depicted as:
|
||||
|
||||
\input{sections/edggm}
|
||||
|
||||
\section{Concrete Security of EdDSA}
|
||||
\input{sections/concrete_security}
|
||||
|
||||
\section{Conclusion}
|
||||
\input{sections/conclusion}
|
||||
|
||||
\newpage
|
||||
|
||||
|
||||
Reference in New Issue
Block a user