mirror of
https://github.com/Kunzisoft/KeePassDX.git
synced 2025-12-04 15:49:33 +01:00
Rename crypto module
This commit is contained in:
2
crypto/.gitignore
vendored
Normal file
2
crypto/.gitignore
vendored
Normal file
@@ -0,0 +1,2 @@
|
||||
/build
|
||||
/.cxx
|
||||
55
crypto/build.gradle
Normal file
55
crypto/build.gradle
Normal file
@@ -0,0 +1,55 @@
|
||||
plugins {
|
||||
id 'com.android.library'
|
||||
id 'kotlin-android'
|
||||
id 'kotlin-kapt'
|
||||
}
|
||||
|
||||
android {
|
||||
compileSdkVersion 30
|
||||
buildToolsVersion "30.0.3"
|
||||
|
||||
defaultConfig {
|
||||
minSdkVersion 15
|
||||
targetSdkVersion 30
|
||||
versionCode 1
|
||||
versionName "1.0"
|
||||
multiDexEnabled true
|
||||
|
||||
testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
|
||||
}
|
||||
|
||||
buildTypes {
|
||||
release {
|
||||
minifyEnabled false
|
||||
proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'
|
||||
}
|
||||
}
|
||||
|
||||
externalNativeBuild {
|
||||
cmake {
|
||||
path "src/main/jni/CMakeLists.txt"
|
||||
}
|
||||
}
|
||||
|
||||
compileOptions {
|
||||
sourceCompatibility JavaVersion.VERSION_1_8
|
||||
targetCompatibility JavaVersion.VERSION_1_8
|
||||
}
|
||||
kotlinOptions {
|
||||
jvmTarget = '1.8'
|
||||
}
|
||||
}
|
||||
|
||||
dependencies {
|
||||
|
||||
implementation "org.jetbrains.kotlin:kotlin-stdlib:$kotlin_version"
|
||||
implementation 'androidx.core:core-ktx:1.3.2'
|
||||
implementation 'androidx.appcompat:appcompat:1.2.0'
|
||||
implementation 'com.google.android.material:material:1.3.0'
|
||||
// Crypto
|
||||
implementation 'org.bouncycastle:bcprov-jdk15on:1.65.01'
|
||||
implementation 'com.lambdapioneer.argon2kt:argon2kt:1.2.0'
|
||||
|
||||
androidTestImplementation 'androidx.test:runner:1.3.0'
|
||||
androidTestImplementation 'androidx.test:rules:1.3.0'
|
||||
}
|
||||
112
crypto/src/androidTest/java/com/kunzisoft/encrypt/AESTest.kt
Normal file
112
crypto/src/androidTest/java/com/kunzisoft/encrypt/AESTest.kt
Normal file
@@ -0,0 +1,112 @@
|
||||
/*
|
||||
* Copyright 2021 Jeremy Jamet / Kunzisoft.
|
||||
*
|
||||
* This file is part of KeePassDX.
|
||||
*
|
||||
* KeePassDX is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* KeePassDX is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with KeePassDX. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
package com.kunzisoft.encrypt
|
||||
|
||||
import com.kunzisoft.encrypt.aes.AESTransformer
|
||||
import org.junit.Assert.assertArrayEquals
|
||||
import org.junit.Test
|
||||
import java.io.ByteArrayInputStream
|
||||
import java.io.ByteArrayOutputStream
|
||||
import java.util.*
|
||||
import javax.crypto.Cipher
|
||||
import javax.crypto.CipherInputStream
|
||||
import javax.crypto.CipherOutputStream
|
||||
|
||||
class AESTest {
|
||||
|
||||
private val mRand = Random()
|
||||
|
||||
@Test
|
||||
fun testAESByteArray() {
|
||||
// Generate random input
|
||||
val input = ByteArray(mRand.nextInt(494) + 18)
|
||||
mRand.nextBytes(input)
|
||||
// Generate key
|
||||
val keyArray = ByteArray(32)
|
||||
mRand.nextBytes(keyArray)
|
||||
// Generate IV
|
||||
val ivArray = ByteArray(16)
|
||||
mRand.nextBytes(ivArray)
|
||||
|
||||
val androidEncrypt = CipherFactory.getAES(Cipher.ENCRYPT_MODE, keyArray, ivArray).doFinal(input)
|
||||
val nativeEncrypt = CipherFactory.getAES(Cipher.ENCRYPT_MODE, keyArray, ivArray, true).doFinal(input)
|
||||
|
||||
assertArrayEquals("Check AES encryption", androidEncrypt, nativeEncrypt)
|
||||
|
||||
val androidDecrypt = CipherFactory.getAES(Cipher.DECRYPT_MODE, keyArray, ivArray).doFinal(androidEncrypt)
|
||||
val nativeDecrypt = CipherFactory.getAES(Cipher.DECRYPT_MODE, keyArray, ivArray, true).doFinal(nativeEncrypt)
|
||||
|
||||
assertArrayEquals("Check AES encryption/decryption", androidDecrypt, nativeDecrypt)
|
||||
|
||||
val androidMixDecrypt = CipherFactory.getAES(Cipher.DECRYPT_MODE, keyArray, ivArray).doFinal(nativeEncrypt)
|
||||
val nativeMixDecrypt = CipherFactory.getAES(Cipher.DECRYPT_MODE, keyArray, ivArray, true).doFinal(androidEncrypt)
|
||||
|
||||
assertArrayEquals("Check AES mix encryption/decryption", androidMixDecrypt, nativeMixDecrypt)
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testAESStream() {
|
||||
// Generate random input
|
||||
val input = ByteArray(mRand.nextInt(494) + 18)
|
||||
mRand.nextBytes(input)
|
||||
// Generate key
|
||||
val keyArray = ByteArray(32)
|
||||
mRand.nextBytes(keyArray)
|
||||
// Generate IV
|
||||
val ivArray = ByteArray(16)
|
||||
mRand.nextBytes(ivArray)
|
||||
|
||||
val androidEncrypt = CipherFactory.getAES(Cipher.ENCRYPT_MODE, keyArray, ivArray)
|
||||
val androidDecrypt = CipherFactory.getAES(Cipher.DECRYPT_MODE, keyArray, ivArray)
|
||||
val androidOutputStream = ByteArrayOutputStream()
|
||||
CipherInputStream(ByteArrayInputStream(input), androidEncrypt).use { cipherInputStream ->
|
||||
CipherOutputStream(androidOutputStream, androidDecrypt).use { outputStream ->
|
||||
outputStream.write(cipherInputStream.readBytes())
|
||||
}
|
||||
}
|
||||
val androidOut = androidOutputStream.toByteArray()
|
||||
|
||||
val nativeEncrypt = CipherFactory.getAES(Cipher.ENCRYPT_MODE, keyArray, ivArray)
|
||||
val nativeDecrypt = CipherFactory.getAES(Cipher.DECRYPT_MODE, keyArray, ivArray)
|
||||
val nativeOutputStream = ByteArrayOutputStream()
|
||||
CipherInputStream(ByteArrayInputStream(input), nativeEncrypt).use { cipherInputStream ->
|
||||
CipherOutputStream(nativeOutputStream, nativeDecrypt).use { outputStream ->
|
||||
outputStream.write(cipherInputStream.readBytes())
|
||||
}
|
||||
}
|
||||
val nativeOut = nativeOutputStream.toByteArray()
|
||||
|
||||
assertArrayEquals("Check AES encryption/decryption", androidOut, nativeOut)
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testAESKDF() {
|
||||
val seed = ByteArray(32)
|
||||
mRand.nextBytes(seed)
|
||||
val key = ByteArray(32)
|
||||
mRand.nextBytes(key)
|
||||
val rounds = 60000L
|
||||
|
||||
val androidKey = AESTransformer.transformKeyInJVM(seed, key, rounds)
|
||||
val nativeKey = AESTransformer.transformKey(seed, key, rounds)
|
||||
|
||||
assertArrayEquals("Does not match", androidKey, nativeKey)
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,26 @@
|
||||
/*
|
||||
* Copyright 2021 Jeremy Jamet / Kunzisoft.
|
||||
*
|
||||
* This file is part of KeePassDX.
|
||||
*
|
||||
* KeePassDX is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* KeePassDX is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with KeePassDX. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
package com.kunzisoft.encrypt
|
||||
|
||||
class CipherTest {
|
||||
|
||||
// TODO Cipher Tests
|
||||
|
||||
}
|
||||
5
crypto/src/main/AndroidManifest.xml
Normal file
5
crypto/src/main/AndroidManifest.xml
Normal file
@@ -0,0 +1,5 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
|
||||
package="com.kunzisoft.encrypt">
|
||||
|
||||
</manifest>
|
||||
53
crypto/src/main/java/com/kunzisoft/encrypt/CipherFactory.kt
Normal file
53
crypto/src/main/java/com/kunzisoft/encrypt/CipherFactory.kt
Normal file
@@ -0,0 +1,53 @@
|
||||
package com.kunzisoft.encrypt
|
||||
|
||||
import android.util.Log
|
||||
import com.kunzisoft.encrypt.aes.AESProvider
|
||||
import org.bouncycastle.jce.provider.BouncyCastleProvider
|
||||
import java.security.InvalidAlgorithmParameterException
|
||||
import java.security.InvalidKeyException
|
||||
import java.security.NoSuchAlgorithmException
|
||||
import java.security.Security
|
||||
import javax.crypto.Cipher
|
||||
import javax.crypto.NoSuchPaddingException
|
||||
import javax.crypto.spec.IvParameterSpec
|
||||
import javax.crypto.spec.SecretKeySpec
|
||||
|
||||
object CipherFactory {
|
||||
|
||||
init {
|
||||
Security.removeProvider(BouncyCastleProvider.PROVIDER_NAME)
|
||||
Security.addProvider(BouncyCastleProvider())
|
||||
}
|
||||
|
||||
@Throws(NoSuchAlgorithmException::class, NoSuchPaddingException::class, InvalidKeyException::class, InvalidAlgorithmParameterException::class)
|
||||
fun getAES(opmode: Int, key: ByteArray, IV: ByteArray, forceNative: Boolean = false): Cipher {
|
||||
val transformation = "AES/CBC/PKCS5Padding"
|
||||
val cipher = if (forceNative || NativeLib.loaded()) {
|
||||
// Try native implementation
|
||||
try {
|
||||
Cipher.getInstance(transformation, AESProvider())
|
||||
} catch (exception: Exception) {
|
||||
Log.e(CipherFactory::class.java.simpleName, "Unable to retrieve native AES cipher", exception)
|
||||
Cipher.getInstance(transformation)
|
||||
}
|
||||
} else {
|
||||
Cipher.getInstance(transformation)
|
||||
}
|
||||
cipher.init(opmode, SecretKeySpec(key, "AES"), IvParameterSpec(IV))
|
||||
return cipher
|
||||
}
|
||||
|
||||
@Throws(NoSuchAlgorithmException::class, NoSuchPaddingException::class, InvalidKeyException::class, InvalidAlgorithmParameterException::class)
|
||||
fun getTwofish(opmode: Int, key: ByteArray, IV: ByteArray): Cipher {
|
||||
val cipher: Cipher = Cipher.getInstance("Twofish/CBC/PKCS7PADDING")
|
||||
cipher.init(opmode, SecretKeySpec(key, "AES"), IvParameterSpec(IV))
|
||||
return cipher
|
||||
}
|
||||
|
||||
@Throws(NoSuchAlgorithmException::class, NoSuchPaddingException::class, InvalidKeyException::class, InvalidAlgorithmParameterException::class)
|
||||
fun getChacha20(opmode: Int, key: ByteArray, IV: ByteArray): Cipher {
|
||||
val cipher = Cipher.getInstance("Chacha7539", BouncyCastleProvider())
|
||||
cipher.init(opmode, SecretKeySpec(key, "ChaCha7539"), IvParameterSpec(IV))
|
||||
return cipher
|
||||
}
|
||||
}
|
||||
108
crypto/src/main/java/com/kunzisoft/encrypt/HashManager.kt
Normal file
108
crypto/src/main/java/com/kunzisoft/encrypt/HashManager.kt
Normal file
@@ -0,0 +1,108 @@
|
||||
/*
|
||||
* Copyright 2019 Jeremy Jamet / Kunzisoft.
|
||||
*
|
||||
* This file is part of KeePassDX.
|
||||
*
|
||||
* KeePassDX is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* KeePassDX is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with KeePassDX. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
package com.kunzisoft.encrypt
|
||||
|
||||
import org.bouncycastle.crypto.engines.ChaCha7539Engine
|
||||
import org.bouncycastle.crypto.engines.Salsa20Engine
|
||||
import org.bouncycastle.crypto.params.KeyParameter
|
||||
import org.bouncycastle.crypto.params.ParametersWithIV
|
||||
import java.io.IOException
|
||||
import java.security.MessageDigest
|
||||
import java.security.NoSuchAlgorithmException
|
||||
|
||||
object HashManager {
|
||||
|
||||
fun getHash256(): MessageDigest {
|
||||
val messageDigest: MessageDigest
|
||||
try {
|
||||
messageDigest = MessageDigest.getInstance("SHA-256")
|
||||
} catch (e: NoSuchAlgorithmException) {
|
||||
throw IOException("SHA-256 not implemented here.", e)
|
||||
}
|
||||
return messageDigest
|
||||
}
|
||||
|
||||
fun hashSha256(vararg data: ByteArray): ByteArray {
|
||||
val hash: MessageDigest = getHash256()
|
||||
for (byteArray in data) {
|
||||
hash.update(byteArray)
|
||||
}
|
||||
return hash.digest()
|
||||
}
|
||||
|
||||
fun getHash512(): MessageDigest {
|
||||
val messageDigest: MessageDigest
|
||||
try {
|
||||
messageDigest = MessageDigest.getInstance("SHA-512")
|
||||
} catch (e: NoSuchAlgorithmException) {
|
||||
throw IOException("SHA-256 not implemented here.", e)
|
||||
}
|
||||
return messageDigest
|
||||
}
|
||||
|
||||
private fun hashSha512(vararg data: ByteArray): ByteArray {
|
||||
val hash: MessageDigest = getHash512()
|
||||
for (byteArray in data) {
|
||||
hash.update(byteArray)
|
||||
}
|
||||
return hash.digest()
|
||||
}
|
||||
|
||||
private val SALSA_IV = byteArrayOf(
|
||||
0xE8.toByte(),
|
||||
0x30,
|
||||
0x09,
|
||||
0x4B,
|
||||
0x97.toByte(),
|
||||
0x20,
|
||||
0x5D,
|
||||
0x2A)
|
||||
|
||||
fun getSalsa20(key: ByteArray): StreamCipher {
|
||||
// Build stream cipher key
|
||||
val key32 = hashSha256(key)
|
||||
|
||||
val keyParam = KeyParameter(key32)
|
||||
val ivParam = ParametersWithIV(keyParam, SALSA_IV)
|
||||
|
||||
val cipher = Salsa20Engine()
|
||||
cipher.init(true, ivParam)
|
||||
|
||||
return StreamCipher(cipher)
|
||||
}
|
||||
|
||||
fun getChaCha20(key: ByteArray): StreamCipher {
|
||||
// Build stream cipher key
|
||||
val hash = hashSha512(key)
|
||||
val key32 = ByteArray(32)
|
||||
val iv = ByteArray(12)
|
||||
|
||||
System.arraycopy(hash, 0, key32, 0, 32)
|
||||
System.arraycopy(hash, 32, iv, 0, 12)
|
||||
|
||||
val keyParam = KeyParameter(key32)
|
||||
val ivParam = ParametersWithIV(keyParam, iv)
|
||||
|
||||
val cipher = ChaCha7539Engine()
|
||||
cipher.init(true, ivParam)
|
||||
|
||||
return StreamCipher(cipher)
|
||||
}
|
||||
}
|
||||
43
crypto/src/main/java/com/kunzisoft/encrypt/NativeLib.kt
Normal file
43
crypto/src/main/java/com/kunzisoft/encrypt/NativeLib.kt
Normal file
@@ -0,0 +1,43 @@
|
||||
/*
|
||||
* Copyright 2019 Jeremy Jamet / Kunzisoft.
|
||||
*
|
||||
* This file is part of KeePassDX.
|
||||
*
|
||||
* KeePassDX is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* KeePassDX is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with KeePassDX. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
package com.kunzisoft.encrypt
|
||||
|
||||
object NativeLib {
|
||||
private var isLoaded = false
|
||||
private var loadSuccess = false
|
||||
|
||||
fun loaded(): Boolean {
|
||||
return init()
|
||||
}
|
||||
|
||||
fun init(): Boolean {
|
||||
if (!isLoaded) {
|
||||
try {
|
||||
System.loadLibrary("final-key")
|
||||
} catch (e: UnsatisfiedLinkError) {
|
||||
return false
|
||||
}
|
||||
|
||||
isLoaded = true
|
||||
loadSuccess = true
|
||||
}
|
||||
return loadSuccess
|
||||
}
|
||||
}
|
||||
38
crypto/src/main/java/com/kunzisoft/encrypt/StreamCipher.kt
Normal file
38
crypto/src/main/java/com/kunzisoft/encrypt/StreamCipher.kt
Normal file
@@ -0,0 +1,38 @@
|
||||
package com.kunzisoft.encrypt
|
||||
|
||||
import org.bouncycastle.crypto.CipherParameters
|
||||
import org.bouncycastle.crypto.DataLengthException
|
||||
|
||||
/**
|
||||
* Stream cipher to process data
|
||||
*/
|
||||
class StreamCipher(private val streamCipher: org.bouncycastle.crypto.StreamCipher) {
|
||||
/**
|
||||
* Initialise the cipher.
|
||||
*
|
||||
* @param forEncryption if true the cipher is initialised for
|
||||
* encryption, if false for decryption.
|
||||
* @param params the key and other data required by the cipher.
|
||||
* @exception IllegalArgumentException if the params argument is
|
||||
* inappropriate.
|
||||
*/
|
||||
@Throws(IllegalArgumentException::class)
|
||||
fun init(forEncryption: Boolean, params: CipherParameters?) {
|
||||
streamCipher.init(forEncryption, params)
|
||||
}
|
||||
|
||||
/**
|
||||
* process a block of bytes from in putting the result into out.
|
||||
*
|
||||
* @param data the input byte array.
|
||||
* @return the output buffer.
|
||||
* @exception DataLengthException if the output buffer is too small.
|
||||
*/
|
||||
@Throws(DataLengthException::class)
|
||||
fun processBytes(data: ByteArray): ByteArray {
|
||||
val size = data.size
|
||||
val out = ByteArray(size)
|
||||
streamCipher.processBytes(data, 0, size, out, 0)
|
||||
return out
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,34 @@
|
||||
/*
|
||||
* Copyright 2019 Jeremy Jamet / Kunzisoft.
|
||||
*
|
||||
* This file is part of KeePassDX.
|
||||
*
|
||||
* KeePassDX is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* KeePassDX is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with KeePassDX. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
package com.kunzisoft.encrypt.aes
|
||||
|
||||
import java.security.Provider
|
||||
|
||||
class AESProvider : Provider("AESProvider", 1.0, "") {
|
||||
init {
|
||||
put("Cipher.AES", NativeAESCipherSpi::class.java.name)
|
||||
}
|
||||
|
||||
companion object {
|
||||
|
||||
private const val serialVersionUID = -3846349284296062658L
|
||||
}
|
||||
|
||||
}
|
||||
@@ -0,0 +1,83 @@
|
||||
/*
|
||||
* Copyright 2017 Brian Pellin, Jeremy Jamet / Kunzisoft.
|
||||
*
|
||||
* This file is part of KeePassDX.
|
||||
*
|
||||
* KeePassDX is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* KeePassDX is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with KeePassDX. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
package com.kunzisoft.encrypt.aes
|
||||
|
||||
import android.annotation.SuppressLint
|
||||
import android.util.Log
|
||||
import com.kunzisoft.encrypt.HashManager
|
||||
import com.kunzisoft.encrypt.NativeLib
|
||||
import java.io.IOException
|
||||
import java.security.InvalidKeyException
|
||||
import javax.crypto.Cipher
|
||||
import javax.crypto.ShortBufferException
|
||||
import javax.crypto.spec.SecretKeySpec
|
||||
|
||||
object AESTransformer {
|
||||
|
||||
fun transformKey(seed: ByteArray?, key: ByteArray?, rounds: Long?): ByteArray? {
|
||||
// Prefer the native final key implementation
|
||||
return try {
|
||||
NativeLib.init()
|
||||
NativeAESKeyTransformer.nTransformKey(seed, key, rounds!!)
|
||||
} catch (exception: Exception) {
|
||||
Log.e(AESTransformer::class.java.simpleName, "Unable to perform native AES key transformation", exception)
|
||||
// Fall back on the android crypto implementation
|
||||
transformKeyInJVM(seed, key, rounds)
|
||||
}
|
||||
}
|
||||
|
||||
@SuppressLint("GetInstance")
|
||||
@Throws(IOException::class)
|
||||
fun transformKeyInJVM(seed: ByteArray?, key: ByteArray?, rounds: Long?): ByteArray {
|
||||
val cipher: Cipher = try {
|
||||
Cipher.getInstance("AES/ECB/NoPadding")
|
||||
} catch (e: Exception) {
|
||||
throw IOException("Unable to get the cipher", e)
|
||||
}
|
||||
try {
|
||||
cipher.init(Cipher.ENCRYPT_MODE, SecretKeySpec(seed, "AES"))
|
||||
} catch (e: InvalidKeyException) {
|
||||
throw IOException("Unable to init the cipher", e)
|
||||
}
|
||||
if (key == null) {
|
||||
throw IOException("Invalid key")
|
||||
}
|
||||
if (rounds == null) {
|
||||
throw IOException("Invalid rounds")
|
||||
}
|
||||
|
||||
// Encrypt key rounds times
|
||||
val keyLength = key.size
|
||||
val newKey = ByteArray(keyLength)
|
||||
System.arraycopy(key, 0, newKey, 0, keyLength)
|
||||
val destKey = ByteArray(keyLength)
|
||||
for (i in 0 until rounds) {
|
||||
try {
|
||||
cipher.update(newKey, 0, newKey.size, destKey, 0)
|
||||
System.arraycopy(destKey, 0, newKey, 0, newKey.size)
|
||||
} catch (e: ShortBufferException) {
|
||||
throw IOException("Short buffer", e)
|
||||
}
|
||||
}
|
||||
|
||||
// Hash the key
|
||||
return HashManager.hashSha256(newKey)
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,304 @@
|
||||
/*
|
||||
* Copyright 2019 Jeremy Jamet / Kunzisoft.
|
||||
*
|
||||
* This file is part of KeePassDX.
|
||||
*
|
||||
* KeePassDX is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* KeePassDX is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with KeePassDX. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
package com.kunzisoft.encrypt.aes;
|
||||
|
||||
import android.util.Log;
|
||||
|
||||
import com.kunzisoft.encrypt.NativeLib;
|
||||
|
||||
import java.lang.ref.PhantomReference;
|
||||
import java.lang.ref.Reference;
|
||||
import java.lang.ref.ReferenceQueue;
|
||||
import java.security.AlgorithmParameters;
|
||||
import java.security.InvalidAlgorithmParameterException;
|
||||
import java.security.InvalidKeyException;
|
||||
import java.security.Key;
|
||||
import java.security.NoSuchAlgorithmException;
|
||||
import java.security.SecureRandom;
|
||||
import java.security.spec.AlgorithmParameterSpec;
|
||||
import java.security.spec.InvalidParameterSpecException;
|
||||
import java.util.HashMap;
|
||||
|
||||
import javax.crypto.BadPaddingException;
|
||||
import javax.crypto.Cipher;
|
||||
import javax.crypto.CipherSpi;
|
||||
import javax.crypto.IllegalBlockSizeException;
|
||||
import javax.crypto.NoSuchPaddingException;
|
||||
import javax.crypto.ShortBufferException;
|
||||
import javax.crypto.spec.IvParameterSpec;
|
||||
|
||||
public class NativeAESCipherSpi extends CipherSpi {
|
||||
|
||||
private static final String TAG = NativeAESCipherSpi.class.getName();
|
||||
|
||||
private static boolean mIsStaticInit = false;
|
||||
private static HashMap<PhantomReference<NativeAESCipherSpi>, Long> mCleanup = new HashMap<>();
|
||||
private static ReferenceQueue<NativeAESCipherSpi> mQueue = new ReferenceQueue<>();
|
||||
|
||||
private final int AES_BLOCK_SIZE = 16;
|
||||
private byte[] mIV;
|
||||
|
||||
private boolean mIsInit = false;
|
||||
private long mCtxPtr;
|
||||
|
||||
private boolean mPadding = false;
|
||||
|
||||
private static void staticInit() {
|
||||
mIsStaticInit = true;
|
||||
|
||||
// Start the cipher context cleanup thread to run forever
|
||||
(new Thread(new Cleanup())).start();
|
||||
}
|
||||
|
||||
private static void addToCleanupQueue(NativeAESCipherSpi ref, long ptr) {
|
||||
Log.d(TAG, "queued cipher context: " + ptr);
|
||||
mCleanup.put(new PhantomReference<>(ref, mQueue), ptr);
|
||||
}
|
||||
|
||||
/** Work with the garbage collector to clean up openssl memory when the cipher
|
||||
* context is garbage collected.
|
||||
* @author bpellin
|
||||
*/
|
||||
private static class Cleanup implements Runnable {
|
||||
|
||||
public void run() {
|
||||
while (true) {
|
||||
try {
|
||||
Reference<? extends NativeAESCipherSpi> ref = mQueue.remove();
|
||||
|
||||
long ctx = mCleanup.remove(ref);
|
||||
nCleanup(ctx);
|
||||
Log.d(TAG, "Cleaned up cipher context: " + ctx);
|
||||
|
||||
} catch (InterruptedException e) {
|
||||
// Do nothing, but resume looping if mQueue.remove is interrupted
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private static native void nCleanup(long ctxPtr);
|
||||
|
||||
public NativeAESCipherSpi() {
|
||||
if ( !mIsStaticInit ) {
|
||||
staticInit();
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
protected byte[] engineDoFinal(byte[] input, int inputOffset, int inputLen)
|
||||
throws IllegalBlockSizeException, BadPaddingException {
|
||||
int maxSize = engineGetOutputSize(inputLen);
|
||||
byte[] output = new byte[maxSize];
|
||||
|
||||
int finalSize;
|
||||
|
||||
try {
|
||||
finalSize = doFinal(input, inputOffset, inputLen, output, 0);
|
||||
} catch (ShortBufferException e) {
|
||||
// This shouldn't be possible rethrow as RuntimeException
|
||||
throw new RuntimeException("Short buffer exception shouldn't be possible from here.");
|
||||
}
|
||||
|
||||
if ( maxSize == finalSize ) {
|
||||
return output;
|
||||
} else {
|
||||
// TODO: Special doFinal to avoid this copy
|
||||
byte[] exact = new byte[finalSize];
|
||||
System.arraycopy(output, 0, exact, 0, finalSize);
|
||||
return exact;
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
protected int engineDoFinal(byte[] input, int inputOffset, int inputLen,
|
||||
byte[] output, int outputOffset) throws ShortBufferException,
|
||||
IllegalBlockSizeException, BadPaddingException {
|
||||
|
||||
int result = doFinal(input, inputOffset, inputLen, output, outputOffset);
|
||||
if ( result == -1 ) {
|
||||
throw new ShortBufferException();
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
private int doFinal(byte[] input, int inputOffset, int inputLen, byte[] output, int outputOffset)
|
||||
throws ShortBufferException, IllegalBlockSizeException, BadPaddingException {
|
||||
|
||||
int outputSize = engineGetOutputSize(inputLen);
|
||||
int updateAmt;
|
||||
if (input != null && inputLen > 0) {
|
||||
updateAmt = nUpdate(mCtxPtr, input, inputOffset, inputLen, output, outputOffset, outputSize);
|
||||
} else {
|
||||
updateAmt = 0;
|
||||
}
|
||||
|
||||
int finalAmt = nFinal(mCtxPtr, mPadding, output, outputOffset + updateAmt, outputSize - updateAmt);
|
||||
return updateAmt + finalAmt;
|
||||
}
|
||||
|
||||
private native int nFinal(long ctxPtr, boolean usePadding, byte[] output, int outputOffest, int outputSize)
|
||||
throws ShortBufferException, IllegalBlockSizeException, BadPaddingException;
|
||||
|
||||
@Override
|
||||
protected int engineGetBlockSize() {
|
||||
return AES_BLOCK_SIZE;
|
||||
}
|
||||
|
||||
@Override
|
||||
protected byte[] engineGetIV() {
|
||||
byte[] copyIV = new byte[0];
|
||||
if (mIV != null) {
|
||||
int lengthIV = mIV.length;
|
||||
copyIV = new byte[lengthIV];
|
||||
System.arraycopy(mIV, 0, copyIV, 0, lengthIV);
|
||||
}
|
||||
return copyIV;
|
||||
}
|
||||
|
||||
@Override
|
||||
protected int engineGetOutputSize(int inputLen) {
|
||||
return inputLen + nGetCacheSize(mCtxPtr) + AES_BLOCK_SIZE;
|
||||
}
|
||||
|
||||
private native int nGetCacheSize(long ctxPtr);
|
||||
|
||||
@Override
|
||||
protected AlgorithmParameters engineGetParameters() {
|
||||
// TODO Auto-generated method stub
|
||||
return null;
|
||||
}
|
||||
|
||||
@Override
|
||||
protected void engineInit(int opmode, Key key, SecureRandom random)
|
||||
throws InvalidKeyException {
|
||||
|
||||
byte[] ivArray = new byte[16];
|
||||
random.nextBytes(ivArray);
|
||||
|
||||
init(opmode, key, new IvParameterSpec(ivArray));
|
||||
}
|
||||
|
||||
@Override
|
||||
protected void engineInit(int opmode, Key key,
|
||||
AlgorithmParameterSpec params, SecureRandom random)
|
||||
throws InvalidKeyException, InvalidAlgorithmParameterException {
|
||||
|
||||
IvParameterSpec ivparam;
|
||||
|
||||
if ( params instanceof IvParameterSpec ) {
|
||||
ivparam = (IvParameterSpec) params;
|
||||
} else {
|
||||
throw new InvalidAlgorithmParameterException("params must be an IvParameterSpec.");
|
||||
}
|
||||
|
||||
init(opmode, key, ivparam);
|
||||
}
|
||||
|
||||
|
||||
@Override
|
||||
protected void engineInit(int opmode, Key key, AlgorithmParameters params,
|
||||
SecureRandom random) throws InvalidKeyException,
|
||||
InvalidAlgorithmParameterException {
|
||||
|
||||
try {
|
||||
engineInit(opmode, key, params.getParameterSpec(AlgorithmParameterSpec.class), random);
|
||||
} catch (InvalidParameterSpecException e) {
|
||||
throw new InvalidAlgorithmParameterException(e);
|
||||
}
|
||||
}
|
||||
|
||||
private void init(int opmode, Key key, IvParameterSpec params) {
|
||||
if (mIsInit) {
|
||||
// Do not allow multiple inits
|
||||
throw new RuntimeException("Don't allow multiple inits");
|
||||
} else {
|
||||
NativeLib.INSTANCE.init();
|
||||
mIsInit = true;
|
||||
}
|
||||
|
||||
mIV = params.getIV();
|
||||
mCtxPtr = nInit(opmode == Cipher.ENCRYPT_MODE, key.getEncoded(), mIV);
|
||||
addToCleanupQueue(this, mCtxPtr);
|
||||
}
|
||||
|
||||
private native long nInit(boolean encrypting, byte[] key, byte[] iv);
|
||||
|
||||
@Override
|
||||
protected void engineSetMode(String mode) throws NoSuchAlgorithmException {
|
||||
if ( ! mode.equals("CBC") ) {
|
||||
throw new NoSuchAlgorithmException("This only supports CBC mode");
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
protected void engineSetPadding(String padding)
|
||||
throws NoSuchPaddingException {
|
||||
|
||||
if ( !mIsInit) {
|
||||
NativeLib.INSTANCE.init();
|
||||
}
|
||||
if ( padding.length() == 0 ) {
|
||||
return;
|
||||
}
|
||||
if ( !padding.equals("PKCS5Padding") ) {
|
||||
throw new NoSuchPaddingException("Only supports PKCS5Padding.");
|
||||
}
|
||||
|
||||
mPadding = true;
|
||||
}
|
||||
|
||||
@Override
|
||||
protected byte[] engineUpdate(byte[] input, int inputOffset, int inputLen) {
|
||||
int maxSize = engineGetOutputSize(inputLen);
|
||||
byte[] output = new byte[maxSize];
|
||||
|
||||
int updateSize = update(input, inputOffset, inputLen, output, 0);
|
||||
|
||||
if ( updateSize == maxSize ) {
|
||||
return output;
|
||||
} else {
|
||||
// TODO: We could optimize update for this case to avoid this extra copy
|
||||
byte[] exact = new byte[updateSize];
|
||||
System.arraycopy(output, 0, exact, 0, updateSize);
|
||||
return exact;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@Override
|
||||
protected int engineUpdate(byte[] input, int inputOffset, int inputLen,
|
||||
byte[] output, int outputOffset) throws ShortBufferException {
|
||||
|
||||
int result = update(input, inputOffset, inputLen, output, outputOffset);
|
||||
if ( result == -1 ) {
|
||||
throw new ShortBufferException("Insufficient buffer.");
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
private int update(byte[] input, int inputOffset, int inputLen, byte[] output, int outputOffset) {
|
||||
int outputSize = engineGetOutputSize(inputLen);
|
||||
return nUpdate(mCtxPtr, input, inputOffset, inputLen, output, outputOffset, outputSize);
|
||||
}
|
||||
|
||||
private native int nUpdate(long ctxPtr, byte[] input, int inputOffset, int inputLen, byte[] output, int outputOffset, int outputSize);
|
||||
|
||||
}
|
||||
@@ -0,0 +1,25 @@
|
||||
/*
|
||||
* Copyright 2017 Brian Pellin, Jeremy Jamet / Kunzisoft.
|
||||
*
|
||||
* This file is part of KeePassDX.
|
||||
*
|
||||
* KeePassDX is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* KeePassDX is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with KeePassDX. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
package com.kunzisoft.encrypt.aes;
|
||||
|
||||
public class NativeAESKeyTransformer {
|
||||
|
||||
public static native byte[] nTransformKey(byte[] seed, byte[] key, long rounds);
|
||||
}
|
||||
@@ -0,0 +1,39 @@
|
||||
package com.kunzisoft.encrypt.argon2
|
||||
|
||||
import com.lambdapioneer.argon2kt.Argon2Kt
|
||||
import com.lambdapioneer.argon2kt.Argon2Mode
|
||||
import com.lambdapioneer.argon2kt.Argon2Version
|
||||
|
||||
object Argon2Transformer {
|
||||
|
||||
fun transformKey(type: Argon2Type,
|
||||
password: ByteArray,
|
||||
salt: ByteArray,
|
||||
parallelism: Long,
|
||||
memory: Long,
|
||||
iterations: Long,
|
||||
version: Int): ByteArray {
|
||||
|
||||
val argon2Type = when(type) {
|
||||
Argon2Type.ARGON2_I -> Argon2Mode.ARGON2_I
|
||||
Argon2Type.ARGON2_D -> Argon2Mode.ARGON2_D
|
||||
Argon2Type.ARGON2_ID -> Argon2Mode.ARGON2_ID
|
||||
}
|
||||
|
||||
val argon2Version = when(version) {
|
||||
0x10 -> Argon2Version.V10
|
||||
0x13 -> Argon2Version.V13
|
||||
else -> Argon2Version.V13
|
||||
}
|
||||
|
||||
return Argon2Kt().hash(
|
||||
argon2Type,
|
||||
password,
|
||||
salt,
|
||||
iterations.toInt(),
|
||||
memory.toInt(),
|
||||
parallelism.toInt(),
|
||||
32,
|
||||
argon2Version).rawHashAsByteArray()
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,5 @@
|
||||
package com.kunzisoft.encrypt.argon2
|
||||
|
||||
enum class Argon2Type {
|
||||
ARGON2_D, ARGON2_I, ARGON2_ID
|
||||
}
|
||||
0
crypto/src/main/jni/.gitignore
vendored
Normal file
0
crypto/src/main/jni/.gitignore
vendored
Normal file
3
crypto/src/main/jni/CMakeLists.txt
Normal file
3
crypto/src/main/jni/CMakeLists.txt
Normal file
@@ -0,0 +1,3 @@
|
||||
cmake_minimum_required(VERSION 3.4.1)
|
||||
|
||||
add_subdirectory(final_key)
|
||||
22
crypto/src/main/jni/final_key/CMakeLists.txt
Normal file
22
crypto/src/main/jni/final_key/CMakeLists.txt
Normal file
@@ -0,0 +1,22 @@
|
||||
cmake_minimum_required(VERSION 3.4.1)
|
||||
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -DUSE_SHA256")
|
||||
|
||||
include_directories(aes/)
|
||||
include_directories(sha/)
|
||||
|
||||
add_library(
|
||||
final-key SHARED
|
||||
kpd_jni.c
|
||||
aes/aescrypt.c
|
||||
aes/aeskey.c
|
||||
aes/aes_modes.c
|
||||
aes/aestab.c
|
||||
sha/hmac.c
|
||||
sha/sha1.c
|
||||
sha/sha2.c
|
||||
)
|
||||
|
||||
find_library(log-lib log)
|
||||
|
||||
target_link_libraries(final-key ${log-lib})
|
||||
278
crypto/src/main/jni/final_key/aes/aes.h
Normal file
278
crypto/src/main/jni/final_key/aes/aes.h
Normal file
@@ -0,0 +1,278 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2013, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation.
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its operation, including, but not limited to, correctness
|
||||
and fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 02/09/2018
|
||||
|
||||
This file contains the definitions required to use AES in C. See aesopt.h
|
||||
for optimisation details.
|
||||
*/
|
||||
|
||||
#ifndef _AES_H
|
||||
#define _AES_H
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
/* This include is used to find 8 & 32 bit unsigned integer types */
|
||||
#include "brg_types.h"
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#define AES_128 /* if a fast 128 bit key scheduler is needed */
|
||||
#define AES_192 /* if a fast 192 bit key scheduler is needed */
|
||||
#define AES_256 /* if a fast 256 bit key scheduler is needed */
|
||||
#define AES_VAR /* if variable key size scheduler is needed */
|
||||
#if 1
|
||||
# define AES_MODES /* if support is needed for modes in the C code */
|
||||
#endif /* (these will use AES_NI if it is present) */
|
||||
#if 0 /* add this to make direct calls to the AES_NI */
|
||||
# /* implemented CBC and CTR modes available */
|
||||
# define ADD_AESNI_MODE_CALLS
|
||||
#endif
|
||||
|
||||
/* The following must also be set in assembler files if being used */
|
||||
|
||||
#define AES_ENCRYPT /* if support for encryption is needed */
|
||||
#define AES_DECRYPT /* if support for decryption is needed */
|
||||
|
||||
#define AES_BLOCK_SIZE_P2 4 /* AES block size as a power of 2 */
|
||||
#define AES_BLOCK_SIZE (1 << AES_BLOCK_SIZE_P2) /* AES block size */
|
||||
#define N_COLS 4 /* the number of columns in the state */
|
||||
|
||||
/* The key schedule length is 11, 13 or 15 16-byte blocks for 128, */
|
||||
/* 192 or 256-bit keys respectively. That is 176, 208 or 240 bytes */
|
||||
/* or 44, 52 or 60 32-bit words. */
|
||||
|
||||
#if defined( AES_VAR ) || defined( AES_256 )
|
||||
#define KS_LENGTH 60
|
||||
#elif defined( AES_192 )
|
||||
#define KS_LENGTH 52
|
||||
#else
|
||||
#define KS_LENGTH 44
|
||||
#endif
|
||||
|
||||
#define AES_RETURN INT_RETURN
|
||||
|
||||
/* the character array 'inf' in the following structures is used */
|
||||
/* to hold AES context information. This AES code uses cx->inf.b[0] */
|
||||
/* to hold the number of rounds multiplied by 16. The other three */
|
||||
/* elements can be used by code that implements additional modes */
|
||||
|
||||
typedef union
|
||||
{ uint32_t l;
|
||||
uint8_t b[4];
|
||||
} aes_inf;
|
||||
|
||||
/* Macros for detecting whether a given context was initialized for */
|
||||
/* use with encryption or decryption code. These should only be used */
|
||||
/* by e.g. language bindings which lose type information when the */
|
||||
/* context pointer is passed to the calling language's runtime. */
|
||||
#define IS_ENCRYPTION_CTX(cx) (((cx)->inf.b[2] & (uint8_t)0x01) == 1)
|
||||
#define IS_DECRYPTION_CTX(cx) (((cx)->inf.b[2] & (uint8_t)0x01) == 0)
|
||||
|
||||
#ifdef _MSC_VER
|
||||
# pragma warning( disable : 4324 )
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER) && defined(_WIN64)
|
||||
#define ALIGNED_(x) __declspec(align(x))
|
||||
#elif defined(__GNUC__) && defined(__x86_64__)
|
||||
#define ALIGNED_(x) __attribute__ ((aligned(x)))
|
||||
#else
|
||||
#define ALIGNED_(x)
|
||||
#endif
|
||||
|
||||
typedef struct ALIGNED_(16)
|
||||
{ uint32_t ks[KS_LENGTH];
|
||||
aes_inf inf;
|
||||
} aes_crypt_ctx;
|
||||
|
||||
typedef aes_crypt_ctx aes_encrypt_ctx;
|
||||
typedef aes_crypt_ctx aes_decrypt_ctx;
|
||||
|
||||
#ifdef _MSC_VER
|
||||
# pragma warning( default : 4324 )
|
||||
#endif
|
||||
|
||||
/* This routine must be called before first use if non-static */
|
||||
/* tables are being used */
|
||||
|
||||
AES_RETURN aes_init(void);
|
||||
|
||||
/* Key lengths in the range 16 <= key_len <= 32 are given in bytes, */
|
||||
/* those in the range 128 <= key_len <= 256 are given in bits */
|
||||
|
||||
#if defined( AES_ENCRYPT )
|
||||
|
||||
#if defined( AES_128 ) || defined( AES_VAR)
|
||||
AES_RETURN aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
#if defined( AES_192 ) || defined( AES_VAR)
|
||||
AES_RETURN aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
#if defined( AES_256 ) || defined( AES_VAR)
|
||||
AES_RETURN aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
#if defined( AES_VAR )
|
||||
AES_RETURN aes_encrypt_key(const unsigned char *key, int key_len, aes_encrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
AES_RETURN aes_encrypt(const unsigned char *in, unsigned char *out, const aes_encrypt_ctx cx[1]);
|
||||
|
||||
#endif
|
||||
|
||||
#if defined( AES_DECRYPT )
|
||||
|
||||
#if defined( AES_128 ) || defined( AES_VAR)
|
||||
AES_RETURN aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
#if defined( AES_192 ) || defined( AES_VAR)
|
||||
AES_RETURN aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
#if defined( AES_256 ) || defined( AES_VAR)
|
||||
AES_RETURN aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
#if defined( AES_VAR )
|
||||
AES_RETURN aes_decrypt_key(const unsigned char *key, int key_len, aes_decrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
AES_RETURN aes_decrypt(const unsigned char *in, unsigned char *out, const aes_decrypt_ctx cx[1]);
|
||||
|
||||
#endif
|
||||
|
||||
#if defined( AES_MODES )
|
||||
|
||||
/* Multiple calls to the following subroutines for multiple block */
|
||||
/* ECB, CBC, CFB, OFB and CTR mode encryption can be used to handle */
|
||||
/* long messages incrementally provided that the context AND the iv */
|
||||
/* are preserved between all such calls. For the ECB and CBC modes */
|
||||
/* each individual call within a series of incremental calls must */
|
||||
/* process only full blocks (i.e. len must be a multiple of 16) but */
|
||||
/* the CFB, OFB and CTR mode calls can handle multiple incremental */
|
||||
/* calls of any length. Each mode is reset when a new AES key is */
|
||||
/* set but ECB needs no reset and CBC can be reset without setting */
|
||||
/* a new key by setting a new IV value. To reset CFB, OFB and CTR */
|
||||
/* without setting the key, aes_mode_reset() must be called and the */
|
||||
/* IV must be set. NOTE: All these calls update the IV on exit so */
|
||||
/* this has to be reset if a new operation with the same IV as the */
|
||||
/* previous one is required (or decryption follows encryption with */
|
||||
/* the same IV array). */
|
||||
|
||||
AES_RETURN aes_test_alignment_detection(unsigned int n);
|
||||
|
||||
AES_RETURN aes_ecb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, const aes_encrypt_ctx cx[1]);
|
||||
|
||||
AES_RETURN aes_ecb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, const aes_decrypt_ctx cx[1]);
|
||||
|
||||
AES_RETURN aes_cbc_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, const aes_encrypt_ctx cx[1]);
|
||||
|
||||
AES_RETURN aes_cbc_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, const aes_decrypt_ctx cx[1]);
|
||||
|
||||
AES_RETURN aes_mode_reset(aes_encrypt_ctx cx[1]);
|
||||
|
||||
AES_RETURN aes_cfb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx cx[1]);
|
||||
|
||||
AES_RETURN aes_cfb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx cx[1]);
|
||||
|
||||
#define aes_ofb_encrypt aes_ofb_crypt
|
||||
#define aes_ofb_decrypt aes_ofb_crypt
|
||||
|
||||
AES_RETURN aes_ofb_crypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx cx[1]);
|
||||
|
||||
typedef void cbuf_inc(unsigned char *cbuf);
|
||||
|
||||
#define aes_ctr_encrypt aes_ctr_crypt
|
||||
#define aes_ctr_decrypt aes_ctr_crypt
|
||||
|
||||
AES_RETURN aes_ctr_crypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *cbuf, cbuf_inc ctr_inc, aes_encrypt_ctx cx[1]);
|
||||
|
||||
#endif
|
||||
|
||||
#if 0 && defined( ADD_AESNI_MODE_CALLS )
|
||||
# define USE_AES_CONTEXT
|
||||
#endif
|
||||
|
||||
#ifdef ADD_AESNI_MODE_CALLS
|
||||
# ifdef USE_AES_CONTEXT
|
||||
|
||||
AES_RETURN aes_CBC_encrypt(const unsigned char *in,
|
||||
unsigned char *out,
|
||||
unsigned char ivec[16],
|
||||
unsigned long length,
|
||||
const aes_encrypt_ctx cx[1]);
|
||||
|
||||
AES_RETURN aes_CBC_decrypt(const unsigned char *in,
|
||||
unsigned char *out,
|
||||
unsigned char ivec[16],
|
||||
unsigned long length,
|
||||
const aes_decrypt_ctx cx[1]);
|
||||
|
||||
AES_RETURN AES_CTR_encrypt(const unsigned char *in,
|
||||
unsigned char *out,
|
||||
const unsigned char ivec[8],
|
||||
const unsigned char nonce[4],
|
||||
unsigned long length,
|
||||
const aes_encrypt_ctx cx[1]);
|
||||
|
||||
# else
|
||||
|
||||
void aes_CBC_encrypt(const unsigned char *in,
|
||||
unsigned char *out,
|
||||
unsigned char ivec[16],
|
||||
unsigned long length,
|
||||
unsigned char *key,
|
||||
int number_of_rounds);
|
||||
|
||||
void aes_CBC_decrypt(const unsigned char *in,
|
||||
unsigned char *out,
|
||||
unsigned char ivec[16],
|
||||
unsigned long length,
|
||||
unsigned char *key,
|
||||
int number_of_rounds);
|
||||
|
||||
void aes_CTR_encrypt(const unsigned char *in,
|
||||
unsigned char *out,
|
||||
const unsigned char ivec[8],
|
||||
const unsigned char nonce[4],
|
||||
unsigned long length,
|
||||
const unsigned char *key,
|
||||
int number_of_rounds);
|
||||
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
622
crypto/src/main/jni/final_key/aes/aes.txt
Normal file
622
crypto/src/main/jni/final_key/aes/aes.txt
Normal file
@@ -0,0 +1,622 @@
|
||||
|
||||
An AES (Rijndael) Implementation in C/C++ (as specified in FIPS-197)
|
||||
====================================================================
|
||||
|
||||
Change (26/09/2018)
|
||||
===================
|
||||
|
||||
1. Changes to test programs to allow them to be built on Linux/GCC
|
||||
(with thanks to Michael Mohr).
|
||||
|
||||
2. Rationalisation of the defines DLL_IMPORT, DYNAMIC_DLL and USE_DLL
|
||||
in the test code - now DLL_IMPORT and DLL_DYNAMIC_LOAD
|
||||
|
||||
3. Update the test_avs test to allow the testing of static, DLL and
|
||||
dynamically loaded DLL libraries.
|
||||
|
||||
Change (21/05/2018)
|
||||
===================
|
||||
|
||||
1. Properly dectect presence of AESNI when using GCC (my thanks to
|
||||
Peter Gutmann for this fix)
|
||||
|
||||
Changes (6/12/2016)
|
||||
====================
|
||||
|
||||
1. Changed function definition of has_aes_ni() to has_aes_ni(void),
|
||||
suggested by Peter Gutmann
|
||||
|
||||
2. Changed the default location for the vsyasm assembler to:
|
||||
C:\Program Files\yasm
|
||||
|
||||
Changes (27/09/2015)
|
||||
====================
|
||||
|
||||
1. Added automatic dynamic table initialisation (my thanks to
|
||||
Henrik S. Ga<47>mann who proposed this addition).
|
||||
|
||||
Changes (09/09/2014)
|
||||
====================
|
||||
|
||||
1. Added the ability to use Intel's hardware support for AES
|
||||
with GCC on Windows and Linux
|
||||
|
||||
Changes (01/09/2014)
|
||||
====================
|
||||
|
||||
1. Clarify some user choices in the file aes_amd64.asm
|
||||
|
||||
2. Change the detection of the x86 and x86_64 processors
|
||||
in aesopt.h to allow assembler code use with GCC
|
||||
|
||||
Changes (14/11/2013)
|
||||
====================
|
||||
|
||||
1. Added the ability to use Intel's hardware support for AES
|
||||
on Windows using Microsoft Visual Studio.
|
||||
|
||||
2. Added the include 'stdint.h' and used the uint<xx>_t instead
|
||||
of the old uint_<xx>t (e.g. uint_32t is now uint32_t).
|
||||
|
||||
3. Added a missing .text directive in aes_x86_v2.asm that caused
|
||||
runtime errors in one build configuration.
|
||||
|
||||
Changes (16/04/2007)
|
||||
====================
|
||||
|
||||
These changes remove errors in the VC++ build files and add some
|
||||
improvements in file naming consitency and portability. There are
|
||||
no changes to overcome reported bugs in the code.
|
||||
|
||||
1. gen_tabs() has been renamed to aes_init() to better decribe its
|
||||
function to those not familiar with AES internals.
|
||||
|
||||
2. via_ace.h has been renamed to aes_via_ace.h.
|
||||
|
||||
3. Minor changes have been made to aestab.h and aestab.c to enable
|
||||
all the code to be compiled in either C or C++.
|
||||
|
||||
4. The code for detecting memory alignment in aesmdoes.c has been
|
||||
simplified and a new routine has been added:
|
||||
|
||||
aes_test_alignment_detection()
|
||||
|
||||
to check that the aligment test is likely to be correct.
|
||||
|
||||
5. The addition of support for Structured Exception Handling (SEH)
|
||||
to YASM (well done Peter and Michael!) has allowed the AMD64
|
||||
x64 assembler code to be changed to comply with SEH requriements.
|
||||
|
||||
6. Corrections to build files (for win32 debug build).
|
||||
|
||||
Overview
|
||||
========
|
||||
|
||||
This code implements AES for both 32 and 64 bit systems with optional
|
||||
assembler support for x86 and AMD64/EM64T (but optimised for AMD64).
|
||||
|
||||
The basic AES source code files are as follows:
|
||||
|
||||
aes.h the header file needed to use AES in C
|
||||
aescpp.h the header file required with to use AES in C++
|
||||
aesopt.h the header file for setting options (and some common code)
|
||||
aestab.h the header file for the AES table declaration
|
||||
aescrypt.c the main C source code file for encryption and decryption
|
||||
aeskey.c the main C source code file for the key schedule
|
||||
aestab.c the main file for the AES tables
|
||||
brg_types.h a header defining some standard types and DLL defines
|
||||
brg_endian.h a header containing code to detect or define endianness
|
||||
aes_x86_v1.asm x86 assembler (YASM) alternative to aescrypt.c using
|
||||
large tables
|
||||
aes_x86_v2.asm x86 assembler (YASM) alternative to aescrypt.c using
|
||||
compressed tables
|
||||
aes_amd64.asm AMD64 assembler (YASM) alternative to aescrypt.c using
|
||||
compressed tables
|
||||
|
||||
In addition AES modes are implemented in the files:
|
||||
|
||||
aes_modes.c AES modes with optional support for VIA ACE detection and use
|
||||
aes_via_ace.h the header file for VIA ACE support
|
||||
|
||||
and Intel hardware support for AES (AES_NI) is implemented in the files
|
||||
|
||||
aes_ni.h defines for AES_NI implementation
|
||||
aes_ni.c the AES_NI implementation
|
||||
|
||||
Other associated files for testing and support are:
|
||||
|
||||
aesaux.h header for auxilliary routines for testsing
|
||||
aesaux.c auxilliary routines for testsingt
|
||||
aestst.h header file for setting the testing environment
|
||||
rdtsc.h a header file that provides access to the Time Stamp Counter
|
||||
aestst.c a simple test program for quick tests of the AES code
|
||||
aesgav.c a program to generate and verify the test vector files
|
||||
aesrav.c a program to verify output against the test vector files
|
||||
aestmr.c a program to time the code on x86 systems
|
||||
modetest.c a program to test the AES modes support
|
||||
vbxam.doc a demonstration of AES DLL use from Visual Basic in Microsoft Word
|
||||
vb.txt Visual Basic code from the above example (win32 only)
|
||||
aesxam.c an example of AES use
|
||||
tablegen.c a program to generate a simplified 'aestab.c' file for
|
||||
use with compilers that find aestab.c too complex
|
||||
yasm.rules the YASM build rules file for Microsoft Visual Studio 2005
|
||||
via_ace.txt describes support for the VIA ACE cryptography engine
|
||||
aes.txt this file
|
||||
|
||||
Building The AES Libraries
|
||||
--------------------------
|
||||
|
||||
A. Versions
|
||||
-----------
|
||||
|
||||
The code can be used to build static and dynamic libraries, each in five
|
||||
versions:
|
||||
|
||||
Key scheduling code in C, encrypt/decrypt in:
|
||||
|
||||
C C source code (win32 and x64)
|
||||
ASM_X86_V1C large table x86 assembler code (win32)
|
||||
ASM_X86_V2C compressed table x86 assembler code (win32)
|
||||
ASM_AMD64 compressed table x64 assembler code (x64)
|
||||
|
||||
Key scheduling and encrypt/decrypt code in assembler:
|
||||
|
||||
ASM_X86_V2 compressed table x86 assembler (win32)
|
||||
|
||||
The C version can be compiled for Win32 or x64 whereas the x86 and x64
|
||||
assembler versions are for Win32 and x64 respectively.
|
||||
|
||||
If Intel's hardware support for AES (AES_NI) is available, it can be used
|
||||
with either the C or the ASM_AMD64 version. If ASM_AMD64 is to be used, it
|
||||
is important that the define USE_INTEL_AES_IF_PRESENT in asm_amd64.asm is
|
||||
set to the same value as it has in aesopt.h
|
||||
|
||||
B. YASM
|
||||
-------
|
||||
|
||||
If you wish to use the x86 assembler files you will also need the YASM open
|
||||
source x86 assembler (r1331 or later) for Windows which can be obtained from:
|
||||
|
||||
http://www.tortall.net/projects/yasm/
|
||||
|
||||
This assembler (vsyasm.exe) should be placed in the directory:
|
||||
|
||||
C:\Program Files\yasm
|
||||
|
||||
C. Configuration
|
||||
----------------
|
||||
|
||||
The following configurations are available as projects for Visual Studio
|
||||
but the following descriptions should allow them to be built in other x86
|
||||
environments
|
||||
|
||||
lib_generic_c Win32 and x64
|
||||
headers: aes.h, aesopt.h, aestab.h, brg_endian.h, tdefs.h
|
||||
(+ aes_ni.h for AES_NI)
|
||||
C source: aescrypt.c, aeskey.c, aestab.c, aes_modes.c
|
||||
(+ aes_ni.c for AES_NI)
|
||||
defines
|
||||
|
||||
dll_generic_c Win32 and x64
|
||||
headers: aes.h, aesopt.h, aestab.h, brg_endian.h, tdefs.h
|
||||
(+ aes_ni.h for AES_NI)
|
||||
C source: aescrypt.c, aeskey.c, aestab.c, aes_modes.c
|
||||
(+ aes_ni.c for AES_NI)
|
||||
defines DLL_EXPORT
|
||||
|
||||
lib_asm_x86_v1c Win32
|
||||
headers: aes.h, aesopt.h, aestab.h, brg_endian.h, tdefs.h
|
||||
C source: aeskey.c, aestab.c, aes_modes.c
|
||||
x86 assembler: aes_x86_v1.asm
|
||||
defines ASM_X86_V1C (set for C and assembler files)
|
||||
|
||||
dll_asm_x86_v1c Win32
|
||||
headers: aes.h, aesopt.h, aestab.h, brg_endian.h, tdefs.h
|
||||
C source: aeskey.c, aestab.c, aes_modes.c
|
||||
x86 assembler: aes_x86_v1.asm
|
||||
defines DLL_EXPORT, ASM_X86_V1C (set for C and assembler files)
|
||||
|
||||
lib_asm_x86_v2c Win32
|
||||
headers: aes.h, aesopt.h, aestab.h, brg_endian.h, tdefs.h
|
||||
C source: aeskey.c, aestab.c, aes_modes.c
|
||||
x86 assembler: aes_x86_v2.asm
|
||||
defines ASM_X86_V2C (set for C and assembler files)
|
||||
|
||||
dll_asm_x86_v2c Win32
|
||||
headers: aes.h, aesopt.h, aestab.h, brg_endian.h, tdefs.h
|
||||
C source: aeskey.c, aestab.c, aes_modes.c
|
||||
x86 assembler: aes_x86_v1.asm
|
||||
defines DLL_EXPORT, ASM_X86_V2C (set for C and assembler files)
|
||||
|
||||
lib_asm_x86_v2 Win32
|
||||
headers: aes.h, aesopt.h, aestab.h, brg_endian.h, tdefs.h
|
||||
C source: aes_modes.c
|
||||
x86 assembler: aes_x86_v1.asm
|
||||
defines ASM_X86_V2 (set for C and assembler files)
|
||||
|
||||
dll_asm_x86_v2 Win32
|
||||
headers: aes.h, aesopt.h, aestab.h, brg_endian.h, tdefs.h
|
||||
C source: aes_modes.c
|
||||
x86 assembler: aes_x86_v1.asm
|
||||
defines DLL_EXPORT, ASM_AMD64_C (set for C and assembler files)
|
||||
|
||||
lib_asm_amd64_c x64
|
||||
headers: aes.h, aesopt.h, aestab.h, brg_endian.h, tdefs.h
|
||||
(+ aes_ni.h for AES_NI)
|
||||
C source: aes_modes.c (+ aes_ni.c for AES_NI)
|
||||
x86 assembler: aes_amd64.asm
|
||||
defines ASM_AMD64_C (set for C and assembler files)
|
||||
|
||||
dll_asm_amd64_c x64
|
||||
headers: aes.h, aesopt.h, aestab.h, brg_endian.h, tdefs.h
|
||||
(+ aes_ni.h for AES_NI)
|
||||
C source: aes_modes.c (+ aes_ni.c for AES_NI)
|
||||
x86 assembler: aes_amd64.asm
|
||||
defines DLL_EXPORT, ASM_AMD64_C (set for C and assembler files)
|
||||
|
||||
Notes:
|
||||
|
||||
ASM_X86_V1C is defined if using the version 1 assembler code (aescrypt1.asm).
|
||||
The defines in the assember file must match those in aes.h and
|
||||
aesopt.h). Also remember to include/exclude the right assembler
|
||||
and C files in the build to avoid undefined or multiply defined
|
||||
symbols - include aes_x86_v1.asm and exclude aescrypt.c
|
||||
|
||||
ASM_X86_V2 is defined if using the version 2 assembler code (aes_x86_v2.asm).
|
||||
This version provides a full, self contained assembler version
|
||||
and does not use any C source code files except for the mutiple
|
||||
block encryption modes that are provided by aes_modes.c. The define
|
||||
ASM_X86_V2 must be set on the YASM command line (or in aes_x86_v2.asm)
|
||||
to use this version and all C files except aec_modes.c and, for the
|
||||
DLL build, aestab.c must be excluded from the build.
|
||||
|
||||
ASM_X86_V2C is defined when using the version 2 assembler code (aes_x86_v2.asm)
|
||||
with faster key scheduling provided by the in C code (the options in
|
||||
the assember file must match those in aes.h and aesopt.h). In this
|
||||
case aeskey.c and aestab.c are needed with aes_x86_v2.asm and the
|
||||
define ASM_X86_V2C must be set for both the C files and for
|
||||
aes_x86_v2.asm in the build commands(or in aesopt.h and aes_x86_v2.asm).
|
||||
Include aes_x86_v2.asm, aeskey.c and aestab.c, exclude aescrypt.c for
|
||||
this option.
|
||||
|
||||
ASM_AMD64_C is defined when using the AMD64 assembly code because the C key
|
||||
scheduling is used in this case.
|
||||
|
||||
DLL_EXPORT must be defined to generate the DLL version of the code and
|
||||
to run tests on it
|
||||
|
||||
DLL_IMPORT must be defined to use the DLL version of the code in an
|
||||
application program
|
||||
|
||||
Directories the paths for the various directories for test vector input and
|
||||
output have to be set in aestst.h
|
||||
|
||||
VIA ACE see the via_ace.txt for this item
|
||||
|
||||
Static The static libraries are named:
|
||||
Libraries
|
||||
aes_lib_generic_c.lib
|
||||
aes_lib_asm_x86_v1c.lib
|
||||
aes_lib_asm_x86_v2.lib
|
||||
aes_lib_asm_x86_v2c.lib
|
||||
aes_lib_asm_amd64_c.lib
|
||||
|
||||
and placed in one of the the directories:
|
||||
|
||||
lib\win32\release\
|
||||
lib\win32\debug\
|
||||
lib\x64\release\
|
||||
lib\x64\debug\
|
||||
|
||||
in the aes root directory depending on the platform(win32 or
|
||||
x64) and the build (release or debug). After any of these is
|
||||
built it is then copied into the aes\lib directory, which is
|
||||
the library location that is subsequently used for testing.
|
||||
Hence testing is always for the last static library built.
|
||||
|
||||
Dynamic These libraries are named:
|
||||
Libraries
|
||||
aes_lib_generic_c.dll
|
||||
aes_lib_asm_x86_v1c.dll
|
||||
aes_lib_asm_x86_v2.dll
|
||||
aes_lib_asm_x86_v2c.dll
|
||||
aes_lib_asm_amd64_c.dll
|
||||
|
||||
and placed in one of the the directories:
|
||||
|
||||
dll\win32\release\
|
||||
dll\win32\debug\
|
||||
dll\x64\release\
|
||||
dll\x64\debug\
|
||||
|
||||
in the aes root directory depending on the platform(win32 or
|
||||
x64) and the build (release or debug). Each DLL library:
|
||||
|
||||
aes_<ext>.dll
|
||||
|
||||
has three associated files:
|
||||
|
||||
aes_dll_<ext>.lib the library file for implicit linking
|
||||
aes_dll_<ext>.exp the exports file
|
||||
aes_dll_<ext>.pdb the symbol file
|
||||
|
||||
After any DLL is built it and its three related files are then
|
||||
copied to the aes\dll directory, which is the library location
|
||||
used in subsequent testing. Hence testing is always for the
|
||||
last DLL built.
|
||||
|
||||
D. Testing
|
||||
----------
|
||||
|
||||
These tests require that the test vector files are placed in the 'testvals'
|
||||
subdirectory. If the AES Algorithm Validation Suite tests are used then
|
||||
the *.fax files need to be put in the 'testvals\fax' subdirectory. This is
|
||||
covered in more detail below.
|
||||
|
||||
The projects test_lib and time_lib are used to test and time the last static
|
||||
library built. They use the files:
|
||||
|
||||
test_lib: Win32 (x64 for the C and AMD64 versions)
|
||||
headers: aes.h, aescpp.h, brg_types.h, aesaux.h and aestst.h
|
||||
C source: aesaux.c, aesrav.c
|
||||
defines:
|
||||
|
||||
time_lib: Win32 (x64 for the C and AMD64 versions)
|
||||
headers: aes.h, aescpp.h, brg_types.h, aesaux.h, aestst.h and rdtsc.h
|
||||
C source: aesaux.c, aestmr.c
|
||||
defines:
|
||||
|
||||
The projects test_dll and time_dll are used to test and time the last DLL
|
||||
built. These use the files:
|
||||
|
||||
test_dll: Win32 (x64 for the C and AMD64 versions)
|
||||
headers: aes.h, aescpp.h, brg_types.h, aesaux.h and aestst.h
|
||||
C source: aesaux.c, aesrav.c
|
||||
defines: DLL_IMPORT
|
||||
|
||||
time_dll: Win32 (x64 for the C and AMD64 versions)
|
||||
headers: aes.h, aescpp.h, brg_types.h, aesaux.h aestst.h and rdtsc.h
|
||||
C source: aesaux.c, aestmr.c
|
||||
defines: DLL_IMPORT
|
||||
|
||||
and default to linkingto with the AES DLL using dynamic (run-time) linking. Implicit
|
||||
linking can be used by adding the lib file associated with the AES DLL (in the aes\dll
|
||||
sub-directory) to the build (under project Properties|Linker in Visual Studio) and
|
||||
removing the DLL_DYNAMIC_LOAD define (under project Properties|C/C++|Preprocessor).
|
||||
|
||||
0 Link is linked into this project and the symbol
|
||||
DLL_DYNAMIC_LOAD is left undefined, then implicit linking will be used
|
||||
|
||||
The above tests take command line arguments that determine which test are run
|
||||
as follows:
|
||||
|
||||
test_lib /t:[knec] /k:[468]
|
||||
test_dll /t:[knec] /k:[468]
|
||||
|
||||
where the symbols in square brackets can be used in any combination (without
|
||||
the brackets) and have the following meanings:
|
||||
|
||||
/t:[knec] selects which tests are used
|
||||
/k:[468] selects the key lengths used
|
||||
/c compares output with reference (see later)
|
||||
|
||||
k: generate ECB Known Answer Test files
|
||||
n: generate ECB Known Answer Test files (new)
|
||||
e: generate ECB Monte Carlo Test files
|
||||
c: generate CBC Monte Carlo Test files
|
||||
|
||||
and the characters giving the lengths are digits representing the key lengths
|
||||
in 32-bit units (4, 6, 8 for lengths of 128, 192 or 256 bits respectively).
|
||||
|
||||
The project test_modes tests the AES modes. It uses the files:
|
||||
|
||||
test_modes: Win32 or x64
|
||||
headers: aes.h, aescpp.h, brg_types.h, aesaux,h and aestst.h
|
||||
C source: aesaux.c, modetest.c
|
||||
defines: none for static library test, DLL_IMPORT for DLL test
|
||||
|
||||
which again links to the last library built.
|
||||
|
||||
E. Other Applications
|
||||
---------------------
|
||||
|
||||
These are:
|
||||
|
||||
gen_tests builds the test_vector files. The commad line is
|
||||
gen_tests /t:knec /k:468 /c
|
||||
as described earlier
|
||||
|
||||
test_aes_avs run the AES Algorithm Validation Suite tests for
|
||||
ECB, CBC, CFB and OFB modes
|
||||
|
||||
gen_tables builds a simple version of aes_tab.c (in aestab2.c)
|
||||
for compilers that cannot handle the normal version
|
||||
aes_example provides an example of AES use
|
||||
|
||||
These applications are linked to the last static library built or, if
|
||||
DLL_IMPORT is defined during compilation, to the last DLL built.
|
||||
|
||||
F. Use of the VIA ACE Cryptography Engine (x86 only)
|
||||
----------------------------------------------------
|
||||
|
||||
The use of the code with the VIA ACE cryptography engine in described in the
|
||||
file via_ace.txt. In outline aes_modes.c is used and USE_VIA_ACE_IF_PRESENT
|
||||
is defined either in section 2 of aesopt.h or as a compilation option in Visual
|
||||
Studio. If in addition ASSUME_VIA_ACE_PRESENT is also defined then all normal
|
||||
AES code will be removed if not needed to support VIA ACE use. If VIA ACE
|
||||
support is needed and AES assembler is being used only the ASM_X86_V1C and
|
||||
ASM_X86_V2C versions should be used since ASM_X86_V2 and ASM_AMD64 do not
|
||||
support the VIA ACE engine.
|
||||
|
||||
G. The AES Test Vector Files
|
||||
----------------------------
|
||||
|
||||
These files fall in the following groups (where <nn> is a two digit
|
||||
number):
|
||||
|
||||
1. ecbvk<nn>.txt ECB vectors with variable key
|
||||
2. ecbvt<nn>.txt ECB vectors with variable text
|
||||
3. ecbnk<nn>.txt new ECB vectors with variable key
|
||||
4. ecbnt<nn>.txt new ECB vectors with variable text
|
||||
5. ecbme<nn>.txt ECB monte carlo encryption test vectors
|
||||
6. ecbmd<nn>.txt ECB monte carlo decryption test vectors
|
||||
7. cbcme<nn>.txt CBC monte carlo encryption test vectors
|
||||
8. cbcmd<nn>.txt CBC monte carlo decryption test vectors
|
||||
|
||||
The first digit of the numeric suffix on the filename gives the block size
|
||||
in 32 bit units and the second numeric digit gives the key size. For example,
|
||||
the file ecbvk44.txt provides the test vectors for ECB encryption with a 128
|
||||
bit block size and a 128 bit key size. The test routines expect to find these
|
||||
files in the 'testvals' subdirectory within the aes root directory. The
|
||||
'outvals' subdirectory is used for outputs that are compared with the files
|
||||
in 'testvals'. Note that the monte carlo test vectors are the result of
|
||||
applying AES iteratively 10000 times, not just once.
|
||||
|
||||
The AES Algorithm Validation Suite tests can be run for ECB, CBC, CFB and
|
||||
OFB modes (CFB1 and CFB8 are not implemented). The test routine uses the
|
||||
*.fax test files, which should be placed in the 'testvals\fax' subdirectory.
|
||||
|
||||
H. The Basic AES Calling Interface
|
||||
----------------------------------
|
||||
|
||||
The basic AES code keeps its state in a context, there being different
|
||||
contexts for encryption and decryption:
|
||||
|
||||
aes_encrypt_ctx
|
||||
aes_decrypt_ctx
|
||||
|
||||
The AES code is initialised with the call
|
||||
|
||||
aes_init(void)
|
||||
|
||||
although this is only essential if the option to generate the AES tables at
|
||||
run-time has been set in the options (i.e.fixed tables are not being used).
|
||||
|
||||
The AES encryption key is set by one of the calls:
|
||||
|
||||
aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1])
|
||||
aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1])
|
||||
aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1])
|
||||
|
||||
or by:
|
||||
|
||||
aes_encrypt_key(const unsigned char *key, int key_len,
|
||||
aes_encrypt_ctx cx[1])
|
||||
|
||||
where the key length is set by 'key_len', which can be the length in bits
|
||||
or bytes.
|
||||
|
||||
Similarly, the AES decryption key is set by one of:
|
||||
|
||||
aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1])
|
||||
aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1])
|
||||
aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1])
|
||||
|
||||
or by:
|
||||
|
||||
aes_decrypt_key(const unsigned char *key, int key_len,
|
||||
aes_decrypt_ctx cx[1])
|
||||
|
||||
Encryption and decryption for a single 16 byte block is then achieved using:
|
||||
|
||||
aes_encrypt(const unsigned char *in, unsigned char *out,
|
||||
const aes_encrypt_ctx cx[1])
|
||||
aes_decrypt(const unsigned char *in, unsigned char *out,
|
||||
const aes_decrypt_ctx cx[1])
|
||||
|
||||
The above subroutines return a value of EXIT_SUCCESS or EXIT_FAILURE
|
||||
depending on whether the operation succeeded or failed.
|
||||
|
||||
I. The Calling Interface for the AES Modes
|
||||
------------------------------------------
|
||||
|
||||
The subroutines for the AES modes, ECB, CBC, CFB, OFB and CTR, each process
|
||||
blocks of variable length and can also be called several times to complete
|
||||
single mode operations incrementally on long messages (or those messages,
|
||||
not all of which are available at the same time). The calls:
|
||||
|
||||
aes_ecb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, const aes_encrypt_ctx cx[1])
|
||||
|
||||
aes_ecb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, const aes_decrypt_ctx cx[1])
|
||||
|
||||
for ECB operations and those for CBC:
|
||||
|
||||
aes_cbc_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, const aes_encrypt_ctx cx[1])
|
||||
|
||||
aes_cbc_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, const aes_decrypt_ctx cx[1])
|
||||
|
||||
can only process blocks whose lengths are multiples of 16 bytes but the calls
|
||||
for CFB, OFB and CTR mode operations:
|
||||
|
||||
aes_cfb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx cx[1])
|
||||
|
||||
aes_cfb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx cx[1])
|
||||
|
||||
aes_ofb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx cx[1])
|
||||
|
||||
aes_ofb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx cx[1])
|
||||
|
||||
aes_ctr_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *cbuf, cbuf_inc ctr_inc, aes_encrypt_ctx cx[1])
|
||||
|
||||
aes_ctr_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *cbuf, cbuf_inc ctr_inc, aes_encrypt_ctx cx[1])
|
||||
|
||||
can process blocks of any length. Note also that CFB, OFB and CTR mode calls only
|
||||
use AES encryption contexts even during decryption operations.
|
||||
|
||||
The calls CTR mode operations use a buffer (cbuf) which holds the counter value
|
||||
together with a function parameter:
|
||||
|
||||
void cbuf_inc(unsigned char *cbuf);
|
||||
|
||||
that is ued to update the counter value after each 16 byte AES operation. The
|
||||
counter buffer is updated appropriately to allow for incremental operations.
|
||||
|
||||
Please note the following IMPORTANT points about the AES mode subroutines:
|
||||
|
||||
1. All modes are reset when a new AES key is set.
|
||||
|
||||
2. Incremental calls to the different modes cannot
|
||||
be mixed. If a change of mode is needed a new
|
||||
key must be set or a reset must be issued (see
|
||||
below).
|
||||
|
||||
3. For modes with IVs, the IV value is an input AND
|
||||
an output since it is updated after each call to
|
||||
the value needed for any subsequent incremental
|
||||
call(s). If the mode is reset, the IV hence has
|
||||
to be set (or reset) as well.
|
||||
|
||||
4. ECB operations must be multiples of 16 bytes
|
||||
but do not need to be reset for new operations.
|
||||
|
||||
5. CBC operations must also be multiples of 16
|
||||
bytes and are reset for a new operation by
|
||||
setting the IV.
|
||||
|
||||
6. CFB, OFB and CTR mode must be reset by setting
|
||||
a new IV value AND by calling:
|
||||
|
||||
aes_mode_reset(aes_encrypt_ctx cx[1])
|
||||
|
||||
For CTR mode the cbuf value also has to be reset.
|
||||
|
||||
7. CFB, OFB and CTR modes only use AES encryption
|
||||
operations and contexts and do not need AES
|
||||
decryption operations.
|
||||
|
||||
8. AES keys remain valid across resets and changes
|
||||
of mode (but encryption and decryption keys must
|
||||
both be set if they are needed).
|
||||
|
||||
Brian Gladman 26/09/2018
|
||||
|
||||
922
crypto/src/main/jni/final_key/aes/aes_amd64.asm
Normal file
922
crypto/src/main/jni/final_key/aes/aes_amd64.asm
Normal file
@@ -0,0 +1,922 @@
|
||||
|
||||
; ---------------------------------------------------------------------------
|
||||
; Copyright (c) 1998-2013, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
;
|
||||
; The redistribution and use of this software (with or without changes)
|
||||
; is allowed without the payment of fees or royalties provided that:
|
||||
;
|
||||
; source code distributions include the above copyright notice, this
|
||||
; list of conditions and the following disclaimer;
|
||||
;
|
||||
; binary distributions include the above copyright notice, this list
|
||||
; of conditions and the following disclaimer in their documentation.
|
||||
;
|
||||
; This software is provided 'as is' with no explicit or implied warranties
|
||||
; in respect of its operation, including, but not limited to, correctness
|
||||
; and fitness for purpose.
|
||||
; ---------------------------------------------------------------------------
|
||||
; Issue Date: 27/10/2018
|
||||
;
|
||||
; I am grateful to Dag Arne Osvik for many discussions of the techniques that
|
||||
; can be used to optimise AES assembler code on AMD64/EM64T architectures.
|
||||
; Some of the techniques used in this implementation are the result of
|
||||
; suggestions made by him for which I am most grateful.
|
||||
|
||||
; An AES implementation for AMD64 processors using the YASM assembler. This
|
||||
; implemetation provides only encryption, decryption and hence requires key
|
||||
; scheduling support in C. It uses 8k bytes of tables but its encryption and
|
||||
; decryption performance is very close to that obtained using large tables.
|
||||
; It can use either Windows or Gnu/Linux calling conventions, which are as
|
||||
; follows:
|
||||
; windows gnu/linux
|
||||
;
|
||||
; in_blk rcx rdi
|
||||
; out_blk rdx rsi
|
||||
; context (cx) r8 rdx
|
||||
;
|
||||
; preserved rsi - + rbx, rbp, rsp, r12, r13, r14 & r15
|
||||
; registers rdi - on both
|
||||
;
|
||||
; destroyed - rsi + rax, rcx, rdx, r8, r9, r10 & r11
|
||||
; registers - rdi on both
|
||||
;
|
||||
; The default convention is that for windows, the gnu/linux convention being
|
||||
; used if __GNUC__ is defined.
|
||||
;
|
||||
; Define _SEH_ to include support for Win64 structured exception handling
|
||||
; (this requires YASM version 0.6 or later).
|
||||
;
|
||||
; In order to use this code in Windows kernel mode, set the NO_PAGING define
|
||||
; to disable structured exception handling and paging.
|
||||
;
|
||||
; This code provides the standard AES block size (128 bits, 16 bytes) and the
|
||||
; three standard AES key sizes (128, 192 and 256 bits). It has the same call
|
||||
; interface as my C implementation. It uses the Microsoft C AMD64 calling
|
||||
; conventions in which the three parameters are placed in rcx, rdx and r8
|
||||
; respectively. The rbx, rsi, rdi, rbp and r12..r15 registers are preserved.
|
||||
;
|
||||
; AES_RETURN aes_encrypt(const unsigned char in_blk[],
|
||||
; unsigned char out_blk[], const aes_encrypt_ctx cx[1]);
|
||||
;
|
||||
; AES_RETURN aes_decrypt(const unsigned char in_blk[],
|
||||
; unsigned char out_blk[], const aes_decrypt_ctx cx[1]);
|
||||
;
|
||||
; AES_RETURN aes_encrypt_key<NNN>(const unsigned char key[],
|
||||
; const aes_encrypt_ctx cx[1]);
|
||||
;
|
||||
; AES_RETURN aes_decrypt_key<NNN>(const unsigned char key[],
|
||||
; const aes_decrypt_ctx cx[1]);
|
||||
;
|
||||
; AES_RETURN aes_encrypt_key(const unsigned char key[],
|
||||
; unsigned int len, const aes_decrypt_ctx cx[1]);
|
||||
;
|
||||
; AES_RETURN aes_decrypt_key(const unsigned char key[],
|
||||
; unsigned int len, const aes_decrypt_ctx cx[1]);
|
||||
;
|
||||
; where <NNN> is 128, 192 or 256. In the last two calls the length can be in
|
||||
; either bits or bytes.
|
||||
|
||||
;----------------------------------------------------------------------------
|
||||
|
||||
; Use of this assembler code in Windows kernel mode requires structured
|
||||
; exception handling and memory paging to be disabled
|
||||
%ifdef NO_PAGING
|
||||
%undef _SEH_
|
||||
%define set_page nopage
|
||||
%else
|
||||
%define set_page
|
||||
%endif
|
||||
|
||||
; Comment in/out the following lines to obtain the desired subroutines. These
|
||||
; selections MUST match those in the C header files aes.h and aesopt.h
|
||||
%ifdef INTEL_AES_POSSIBLE
|
||||
%define USE_INTEL_AES_IF_PRESENT
|
||||
%endif
|
||||
%define AES_128 ; define if AES with 128 bit keys is needed
|
||||
%define AES_192 ; define if AES with 192 bit keys is needed
|
||||
%define AES_256 ; define if AES with 256 bit keys is needed
|
||||
%define AES_VAR ; define if a variable key size is needed
|
||||
%define ENCRYPTION ; define if encryption is needed
|
||||
%define DECRYPTION ; define if decryption is needed
|
||||
;----------------------------------------------------------------------------
|
||||
|
||||
%ifdef USE_INTEL_AES_IF_PRESENT
|
||||
%define aes_ni(x) aes_ %+ x %+ _i
|
||||
%undef AES_REV_DKS
|
||||
%else
|
||||
%define aes_ni(x) aes_ %+ x
|
||||
%define AES_REV_DKS
|
||||
%endif
|
||||
|
||||
%define LAST_ROUND_TABLES ; define for the faster version using extra tables
|
||||
|
||||
; The encryption key schedule has the following in memory layout where N is the
|
||||
; number of rounds (10, 12 or 14):
|
||||
;
|
||||
; lo: | input key (round 0) | ; each round is four 32-bit words
|
||||
; | encryption round 1 |
|
||||
; | encryption round 2 |
|
||||
; ....
|
||||
; | encryption round N-1 |
|
||||
; hi: | encryption round N |
|
||||
;
|
||||
; The decryption key schedule is normally set up so that it has the same
|
||||
; layout as above by actually reversing the order of the encryption key
|
||||
; schedule in memory (this happens when AES_REV_DKS is set):
|
||||
;
|
||||
; lo: | decryption round 0 | = | encryption round N |
|
||||
; | decryption round 1 | = INV_MIX_COL[ | encryption round N-1 | ]
|
||||
; | decryption round 2 | = INV_MIX_COL[ | encryption round N-2 | ]
|
||||
; .... ....
|
||||
; | decryption round N-1 | = INV_MIX_COL[ | encryption round 1 | ]
|
||||
; hi: | decryption round N | = | input key (round 0) |
|
||||
;
|
||||
; with rounds except the first and last modified using inv_mix_column()
|
||||
; But if AES_REV_DKS is NOT set the order of keys is left as it is for
|
||||
; encryption so that it has to be accessed in reverse when used for
|
||||
; decryption (although the inverse mix column modifications are done)
|
||||
;
|
||||
; lo: | decryption round 0 | = | input key (round 0) |
|
||||
; | decryption round 1 | = INV_MIX_COL[ | encryption round 1 | ]
|
||||
; | decryption round 2 | = INV_MIX_COL[ | encryption round 2 | ]
|
||||
; .... ....
|
||||
; | decryption round N-1 | = INV_MIX_COL[ | encryption round N-1 | ]
|
||||
; hi: | decryption round N | = | encryption round N |
|
||||
;
|
||||
; This layout is faster when the assembler key scheduling is used (not
|
||||
; used here).
|
||||
;
|
||||
; The DLL interface must use the _stdcall convention in which the number
|
||||
; of bytes of parameter space is added after an @ to the rouutine's name.
|
||||
; We must also remove our parameters from the stack before return (see
|
||||
; the do_exit macro). Define DLL_EXPORT for the Dynamic Link Library version.
|
||||
|
||||
; %define DLL_EXPORT
|
||||
|
||||
; End of user defines
|
||||
|
||||
%ifdef AES_VAR
|
||||
%ifndef AES_128
|
||||
%define AES_128
|
||||
%endif
|
||||
%ifndef AES_192
|
||||
%define AES_192
|
||||
%endif
|
||||
%ifndef AES_256
|
||||
%define AES_256
|
||||
%endif
|
||||
%endif
|
||||
|
||||
%ifdef AES_VAR
|
||||
%define KS_LENGTH 60
|
||||
%elifdef AES_256
|
||||
%define KS_LENGTH 60
|
||||
%elifdef AES_192
|
||||
%define KS_LENGTH 52
|
||||
%else
|
||||
%define KS_LENGTH 44
|
||||
%endif
|
||||
|
||||
%define r0 rax
|
||||
%define r1 rdx
|
||||
%define r2 rcx
|
||||
%define r3 rbx
|
||||
%define r4 rsi
|
||||
%define r5 rdi
|
||||
%define r6 rbp
|
||||
%define r7 rsp
|
||||
|
||||
%define raxd eax
|
||||
%define rdxd edx
|
||||
%define rcxd ecx
|
||||
%define rbxd ebx
|
||||
%define rsid esi
|
||||
%define rdid edi
|
||||
%define rbpd ebp
|
||||
%define rspd esp
|
||||
|
||||
%define raxb al
|
||||
%define rdxb dl
|
||||
%define rcxb cl
|
||||
%define rbxb bl
|
||||
%define rsib sil
|
||||
%define rdib dil
|
||||
%define rbpb bpl
|
||||
%define rspb spl
|
||||
|
||||
%define r0h ah
|
||||
%define r1h dh
|
||||
%define r2h ch
|
||||
%define r3h bh
|
||||
|
||||
%define r0d eax
|
||||
%define r1d edx
|
||||
%define r2d ecx
|
||||
%define r3d ebx
|
||||
|
||||
; finite field multiplies by {02}, {04} and {08}
|
||||
|
||||
%define f2(x) ((x<<1)^(((x>>7)&1)*0x11b))
|
||||
%define f4(x) ((x<<2)^(((x>>6)&1)*0x11b)^(((x>>6)&2)*0x11b))
|
||||
%define f8(x) ((x<<3)^(((x>>5)&1)*0x11b)^(((x>>5)&2)*0x11b)^(((x>>5)&4)*0x11b))
|
||||
|
||||
; finite field multiplies required in table generation
|
||||
|
||||
%define f3(x) (f2(x) ^ x)
|
||||
%define f9(x) (f8(x) ^ x)
|
||||
%define fb(x) (f8(x) ^ f2(x) ^ x)
|
||||
%define fd(x) (f8(x) ^ f4(x) ^ x)
|
||||
%define fe(x) (f8(x) ^ f4(x) ^ f2(x))
|
||||
|
||||
; macro for expanding S-box data
|
||||
|
||||
%macro enc_vals 1
|
||||
db %1(0x63),%1(0x7c),%1(0x77),%1(0x7b),%1(0xf2),%1(0x6b),%1(0x6f),%1(0xc5)
|
||||
db %1(0x30),%1(0x01),%1(0x67),%1(0x2b),%1(0xfe),%1(0xd7),%1(0xab),%1(0x76)
|
||||
db %1(0xca),%1(0x82),%1(0xc9),%1(0x7d),%1(0xfa),%1(0x59),%1(0x47),%1(0xf0)
|
||||
db %1(0xad),%1(0xd4),%1(0xa2),%1(0xaf),%1(0x9c),%1(0xa4),%1(0x72),%1(0xc0)
|
||||
db %1(0xb7),%1(0xfd),%1(0x93),%1(0x26),%1(0x36),%1(0x3f),%1(0xf7),%1(0xcc)
|
||||
db %1(0x34),%1(0xa5),%1(0xe5),%1(0xf1),%1(0x71),%1(0xd8),%1(0x31),%1(0x15)
|
||||
db %1(0x04),%1(0xc7),%1(0x23),%1(0xc3),%1(0x18),%1(0x96),%1(0x05),%1(0x9a)
|
||||
db %1(0x07),%1(0x12),%1(0x80),%1(0xe2),%1(0xeb),%1(0x27),%1(0xb2),%1(0x75)
|
||||
db %1(0x09),%1(0x83),%1(0x2c),%1(0x1a),%1(0x1b),%1(0x6e),%1(0x5a),%1(0xa0)
|
||||
db %1(0x52),%1(0x3b),%1(0xd6),%1(0xb3),%1(0x29),%1(0xe3),%1(0x2f),%1(0x84)
|
||||
db %1(0x53),%1(0xd1),%1(0x00),%1(0xed),%1(0x20),%1(0xfc),%1(0xb1),%1(0x5b)
|
||||
db %1(0x6a),%1(0xcb),%1(0xbe),%1(0x39),%1(0x4a),%1(0x4c),%1(0x58),%1(0xcf)
|
||||
db %1(0xd0),%1(0xef),%1(0xaa),%1(0xfb),%1(0x43),%1(0x4d),%1(0x33),%1(0x85)
|
||||
db %1(0x45),%1(0xf9),%1(0x02),%1(0x7f),%1(0x50),%1(0x3c),%1(0x9f),%1(0xa8)
|
||||
db %1(0x51),%1(0xa3),%1(0x40),%1(0x8f),%1(0x92),%1(0x9d),%1(0x38),%1(0xf5)
|
||||
db %1(0xbc),%1(0xb6),%1(0xda),%1(0x21),%1(0x10),%1(0xff),%1(0xf3),%1(0xd2)
|
||||
db %1(0xcd),%1(0x0c),%1(0x13),%1(0xec),%1(0x5f),%1(0x97),%1(0x44),%1(0x17)
|
||||
db %1(0xc4),%1(0xa7),%1(0x7e),%1(0x3d),%1(0x64),%1(0x5d),%1(0x19),%1(0x73)
|
||||
db %1(0x60),%1(0x81),%1(0x4f),%1(0xdc),%1(0x22),%1(0x2a),%1(0x90),%1(0x88)
|
||||
db %1(0x46),%1(0xee),%1(0xb8),%1(0x14),%1(0xde),%1(0x5e),%1(0x0b),%1(0xdb)
|
||||
db %1(0xe0),%1(0x32),%1(0x3a),%1(0x0a),%1(0x49),%1(0x06),%1(0x24),%1(0x5c)
|
||||
db %1(0xc2),%1(0xd3),%1(0xac),%1(0x62),%1(0x91),%1(0x95),%1(0xe4),%1(0x79)
|
||||
db %1(0xe7),%1(0xc8),%1(0x37),%1(0x6d),%1(0x8d),%1(0xd5),%1(0x4e),%1(0xa9)
|
||||
db %1(0x6c),%1(0x56),%1(0xf4),%1(0xea),%1(0x65),%1(0x7a),%1(0xae),%1(0x08)
|
||||
db %1(0xba),%1(0x78),%1(0x25),%1(0x2e),%1(0x1c),%1(0xa6),%1(0xb4),%1(0xc6)
|
||||
db %1(0xe8),%1(0xdd),%1(0x74),%1(0x1f),%1(0x4b),%1(0xbd),%1(0x8b),%1(0x8a)
|
||||
db %1(0x70),%1(0x3e),%1(0xb5),%1(0x66),%1(0x48),%1(0x03),%1(0xf6),%1(0x0e)
|
||||
db %1(0x61),%1(0x35),%1(0x57),%1(0xb9),%1(0x86),%1(0xc1),%1(0x1d),%1(0x9e)
|
||||
db %1(0xe1),%1(0xf8),%1(0x98),%1(0x11),%1(0x69),%1(0xd9),%1(0x8e),%1(0x94)
|
||||
db %1(0x9b),%1(0x1e),%1(0x87),%1(0xe9),%1(0xce),%1(0x55),%1(0x28),%1(0xdf)
|
||||
db %1(0x8c),%1(0xa1),%1(0x89),%1(0x0d),%1(0xbf),%1(0xe6),%1(0x42),%1(0x68)
|
||||
db %1(0x41),%1(0x99),%1(0x2d),%1(0x0f),%1(0xb0),%1(0x54),%1(0xbb),%1(0x16)
|
||||
%endmacro
|
||||
|
||||
%macro dec_vals 1
|
||||
db %1(0x52),%1(0x09),%1(0x6a),%1(0xd5),%1(0x30),%1(0x36),%1(0xa5),%1(0x38)
|
||||
db %1(0xbf),%1(0x40),%1(0xa3),%1(0x9e),%1(0x81),%1(0xf3),%1(0xd7),%1(0xfb)
|
||||
db %1(0x7c),%1(0xe3),%1(0x39),%1(0x82),%1(0x9b),%1(0x2f),%1(0xff),%1(0x87)
|
||||
db %1(0x34),%1(0x8e),%1(0x43),%1(0x44),%1(0xc4),%1(0xde),%1(0xe9),%1(0xcb)
|
||||
db %1(0x54),%1(0x7b),%1(0x94),%1(0x32),%1(0xa6),%1(0xc2),%1(0x23),%1(0x3d)
|
||||
db %1(0xee),%1(0x4c),%1(0x95),%1(0x0b),%1(0x42),%1(0xfa),%1(0xc3),%1(0x4e)
|
||||
db %1(0x08),%1(0x2e),%1(0xa1),%1(0x66),%1(0x28),%1(0xd9),%1(0x24),%1(0xb2)
|
||||
db %1(0x76),%1(0x5b),%1(0xa2),%1(0x49),%1(0x6d),%1(0x8b),%1(0xd1),%1(0x25)
|
||||
db %1(0x72),%1(0xf8),%1(0xf6),%1(0x64),%1(0x86),%1(0x68),%1(0x98),%1(0x16)
|
||||
db %1(0xd4),%1(0xa4),%1(0x5c),%1(0xcc),%1(0x5d),%1(0x65),%1(0xb6),%1(0x92)
|
||||
db %1(0x6c),%1(0x70),%1(0x48),%1(0x50),%1(0xfd),%1(0xed),%1(0xb9),%1(0xda)
|
||||
db %1(0x5e),%1(0x15),%1(0x46),%1(0x57),%1(0xa7),%1(0x8d),%1(0x9d),%1(0x84)
|
||||
db %1(0x90),%1(0xd8),%1(0xab),%1(0x00),%1(0x8c),%1(0xbc),%1(0xd3),%1(0x0a)
|
||||
db %1(0xf7),%1(0xe4),%1(0x58),%1(0x05),%1(0xb8),%1(0xb3),%1(0x45),%1(0x06)
|
||||
db %1(0xd0),%1(0x2c),%1(0x1e),%1(0x8f),%1(0xca),%1(0x3f),%1(0x0f),%1(0x02)
|
||||
db %1(0xc1),%1(0xaf),%1(0xbd),%1(0x03),%1(0x01),%1(0x13),%1(0x8a),%1(0x6b)
|
||||
db %1(0x3a),%1(0x91),%1(0x11),%1(0x41),%1(0x4f),%1(0x67),%1(0xdc),%1(0xea)
|
||||
db %1(0x97),%1(0xf2),%1(0xcf),%1(0xce),%1(0xf0),%1(0xb4),%1(0xe6),%1(0x73)
|
||||
db %1(0x96),%1(0xac),%1(0x74),%1(0x22),%1(0xe7),%1(0xad),%1(0x35),%1(0x85)
|
||||
db %1(0xe2),%1(0xf9),%1(0x37),%1(0xe8),%1(0x1c),%1(0x75),%1(0xdf),%1(0x6e)
|
||||
db %1(0x47),%1(0xf1),%1(0x1a),%1(0x71),%1(0x1d),%1(0x29),%1(0xc5),%1(0x89)
|
||||
db %1(0x6f),%1(0xb7),%1(0x62),%1(0x0e),%1(0xaa),%1(0x18),%1(0xbe),%1(0x1b)
|
||||
db %1(0xfc),%1(0x56),%1(0x3e),%1(0x4b),%1(0xc6),%1(0xd2),%1(0x79),%1(0x20)
|
||||
db %1(0x9a),%1(0xdb),%1(0xc0),%1(0xfe),%1(0x78),%1(0xcd),%1(0x5a),%1(0xf4)
|
||||
db %1(0x1f),%1(0xdd),%1(0xa8),%1(0x33),%1(0x88),%1(0x07),%1(0xc7),%1(0x31)
|
||||
db %1(0xb1),%1(0x12),%1(0x10),%1(0x59),%1(0x27),%1(0x80),%1(0xec),%1(0x5f)
|
||||
db %1(0x60),%1(0x51),%1(0x7f),%1(0xa9),%1(0x19),%1(0xb5),%1(0x4a),%1(0x0d)
|
||||
db %1(0x2d),%1(0xe5),%1(0x7a),%1(0x9f),%1(0x93),%1(0xc9),%1(0x9c),%1(0xef)
|
||||
db %1(0xa0),%1(0xe0),%1(0x3b),%1(0x4d),%1(0xae),%1(0x2a),%1(0xf5),%1(0xb0)
|
||||
db %1(0xc8),%1(0xeb),%1(0xbb),%1(0x3c),%1(0x83),%1(0x53),%1(0x99),%1(0x61)
|
||||
db %1(0x17),%1(0x2b),%1(0x04),%1(0x7e),%1(0xba),%1(0x77),%1(0xd6),%1(0x26)
|
||||
db %1(0xe1),%1(0x69),%1(0x14),%1(0x63),%1(0x55),%1(0x21),%1(0x0c),%1(0x7d)
|
||||
%endmacro
|
||||
|
||||
%define u8(x) f2(x), x, x, f3(x), f2(x), x, x, f3(x)
|
||||
%define v8(x) fe(x), f9(x), fd(x), fb(x), fe(x), f9(x), fd(x), x
|
||||
%define w8(x) x, 0, 0, 0, x, 0, 0, 0
|
||||
|
||||
%define tptr rbp ; table pointer
|
||||
%define kptr r8 ; key schedule pointer
|
||||
%define fofs 128 ; adjust offset in key schedule to keep |disp| < 128
|
||||
%define fk_ref(x,y) [kptr-16*x+fofs+4*y]
|
||||
%ifdef AES_REV_DKS
|
||||
%define rofs 128
|
||||
%define ik_ref(x,y) [kptr-16*x+rofs+4*y]
|
||||
%else
|
||||
%define rofs -128
|
||||
%define ik_ref(x,y) [kptr+16*x+rofs+4*y]
|
||||
%endif
|
||||
|
||||
%define tab_0(x) [tptr+8*x]
|
||||
%define tab_1(x) [tptr+8*x+3]
|
||||
%define tab_2(x) [tptr+8*x+2]
|
||||
%define tab_3(x) [tptr+8*x+1]
|
||||
%define tab_f(x) byte [tptr+8*x+1]
|
||||
%define tab_i(x) byte [tptr+8*x+7]
|
||||
%define t_ref(x,r) tab_ %+ x(r)
|
||||
|
||||
%macro ff_rnd 5 ; normal forward round
|
||||
mov %1d, fk_ref(%5,0)
|
||||
mov %2d, fk_ref(%5,1)
|
||||
mov %3d, fk_ref(%5,2)
|
||||
mov %4d, fk_ref(%5,3)
|
||||
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
shr eax, 16
|
||||
xor %1d, t_ref(0,rsi)
|
||||
xor %4d, t_ref(1,rdi)
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
xor %3d, t_ref(2,rsi)
|
||||
xor %2d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
shr ebx, 16
|
||||
xor %2d, t_ref(0,rsi)
|
||||
xor %1d, t_ref(1,rdi)
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
xor %4d, t_ref(2,rsi)
|
||||
xor %3d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
shr ecx, 16
|
||||
xor %3d, t_ref(0,rsi)
|
||||
xor %2d, t_ref(1,rdi)
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
xor %1d, t_ref(2,rsi)
|
||||
xor %4d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
shr edx, 16
|
||||
xor %4d, t_ref(0,rsi)
|
||||
xor %3d, t_ref(1,rdi)
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
xor %2d, t_ref(2,rsi)
|
||||
xor %1d, t_ref(3,rdi)
|
||||
|
||||
mov eax,%1d
|
||||
mov ebx,%2d
|
||||
mov ecx,%3d
|
||||
mov edx,%4d
|
||||
%endmacro
|
||||
|
||||
%ifdef LAST_ROUND_TABLES
|
||||
|
||||
%macro fl_rnd 5 ; last forward round
|
||||
add tptr, 2048
|
||||
mov %1d, fk_ref(%5,0)
|
||||
mov %2d, fk_ref(%5,1)
|
||||
mov %3d, fk_ref(%5,2)
|
||||
mov %4d, fk_ref(%5,3)
|
||||
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
shr eax, 16
|
||||
xor %1d, t_ref(0,rsi)
|
||||
xor %4d, t_ref(1,rdi)
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
xor %3d, t_ref(2,rsi)
|
||||
xor %2d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
shr ebx, 16
|
||||
xor %2d, t_ref(0,rsi)
|
||||
xor %1d, t_ref(1,rdi)
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
xor %4d, t_ref(2,rsi)
|
||||
xor %3d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
shr ecx, 16
|
||||
xor %3d, t_ref(0,rsi)
|
||||
xor %2d, t_ref(1,rdi)
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
xor %1d, t_ref(2,rsi)
|
||||
xor %4d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
shr edx, 16
|
||||
xor %4d, t_ref(0,rsi)
|
||||
xor %3d, t_ref(1,rdi)
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
xor %2d, t_ref(2,rsi)
|
||||
xor %1d, t_ref(3,rdi)
|
||||
%endmacro
|
||||
|
||||
%else
|
||||
|
||||
%macro fl_rnd 5 ; last forward round
|
||||
mov %1d, fk_ref(%5,0)
|
||||
mov %2d, fk_ref(%5,1)
|
||||
mov %3d, fk_ref(%5,2)
|
||||
mov %4d, fk_ref(%5,3)
|
||||
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
shr eax, 16
|
||||
movzx esi, t_ref(f,rsi)
|
||||
movzx edi, t_ref(f,rdi)
|
||||
xor %1d, esi
|
||||
rol edi, 8
|
||||
xor %4d, edi
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
movzx esi, t_ref(f,rsi)
|
||||
movzx edi, t_ref(f,rdi)
|
||||
rol esi, 16
|
||||
rol edi, 24
|
||||
xor %3d, esi
|
||||
xor %2d, edi
|
||||
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
shr ebx, 16
|
||||
movzx esi, t_ref(f,rsi)
|
||||
movzx edi, t_ref(f,rdi)
|
||||
xor %2d, esi
|
||||
rol edi, 8
|
||||
xor %1d, edi
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
movzx esi, t_ref(f,rsi)
|
||||
movzx edi, t_ref(f,rdi)
|
||||
rol esi, 16
|
||||
rol edi, 24
|
||||
xor %4d, esi
|
||||
xor %3d, edi
|
||||
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
movzx esi, t_ref(f,rsi)
|
||||
movzx edi, t_ref(f,rdi)
|
||||
shr ecx, 16
|
||||
xor %3d, esi
|
||||
rol edi, 8
|
||||
xor %2d, edi
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
movzx esi, t_ref(f,rsi)
|
||||
movzx edi, t_ref(f,rdi)
|
||||
rol esi, 16
|
||||
rol edi, 24
|
||||
xor %1d, esi
|
||||
xor %4d, edi
|
||||
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
movzx esi, t_ref(f,rsi)
|
||||
movzx edi, t_ref(f,rdi)
|
||||
shr edx, 16
|
||||
xor %4d, esi
|
||||
rol edi, 8
|
||||
xor %3d, edi
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
movzx esi, t_ref(f,rsi)
|
||||
movzx edi, t_ref(f,rdi)
|
||||
rol esi, 16
|
||||
rol edi, 24
|
||||
xor %2d, esi
|
||||
xor %1d, edi
|
||||
%endmacro
|
||||
|
||||
%endif
|
||||
|
||||
%macro ii_rnd 5 ; normal inverse round
|
||||
mov %1d, ik_ref(%5,0)
|
||||
mov %2d, ik_ref(%5,1)
|
||||
mov %3d, ik_ref(%5,2)
|
||||
mov %4d, ik_ref(%5,3)
|
||||
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
shr eax, 16
|
||||
xor %1d, t_ref(0,rsi)
|
||||
xor %2d, t_ref(1,rdi)
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
xor %3d, t_ref(2,rsi)
|
||||
xor %4d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
shr ebx, 16
|
||||
xor %2d, t_ref(0,rsi)
|
||||
xor %3d, t_ref(1,rdi)
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
xor %4d, t_ref(2,rsi)
|
||||
xor %1d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
shr ecx, 16
|
||||
xor %3d, t_ref(0,rsi)
|
||||
xor %4d, t_ref(1,rdi)
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
xor %1d, t_ref(2,rsi)
|
||||
xor %2d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
shr edx, 16
|
||||
xor %4d, t_ref(0,rsi)
|
||||
xor %1d, t_ref(1,rdi)
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
xor %2d, t_ref(2,rsi)
|
||||
xor %3d, t_ref(3,rdi)
|
||||
|
||||
mov eax,%1d
|
||||
mov ebx,%2d
|
||||
mov ecx,%3d
|
||||
mov edx,%4d
|
||||
%endmacro
|
||||
|
||||
%ifdef LAST_ROUND_TABLES
|
||||
|
||||
%macro il_rnd 5 ; last inverse round
|
||||
add tptr, 2048
|
||||
mov %1d, ik_ref(%5,0)
|
||||
mov %2d, ik_ref(%5,1)
|
||||
mov %3d, ik_ref(%5,2)
|
||||
mov %4d, ik_ref(%5,3)
|
||||
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
shr eax, 16
|
||||
xor %1d, t_ref(0,rsi)
|
||||
xor %2d, t_ref(1,rdi)
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
xor %3d, t_ref(2,rsi)
|
||||
xor %4d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
shr ebx, 16
|
||||
xor %2d, t_ref(0,rsi)
|
||||
xor %3d, t_ref(1,rdi)
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
xor %4d, t_ref(2,rsi)
|
||||
xor %1d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
shr ecx, 16
|
||||
xor %3d, t_ref(0,rsi)
|
||||
xor %4d, t_ref(1,rdi)
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
xor %1d, t_ref(2,rsi)
|
||||
xor %2d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
shr edx, 16
|
||||
xor %4d, t_ref(0,rsi)
|
||||
xor %1d, t_ref(1,rdi)
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
xor %2d, t_ref(2,rsi)
|
||||
xor %3d, t_ref(3,rdi)
|
||||
%endmacro
|
||||
|
||||
%else
|
||||
|
||||
%macro il_rnd 5 ; last inverse round
|
||||
mov %1d, ik_ref(%5,0)
|
||||
mov %2d, ik_ref(%5,1)
|
||||
mov %3d, ik_ref(%5,2)
|
||||
mov %4d, ik_ref(%5,3)
|
||||
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
movzx esi, t_ref(i,rsi)
|
||||
movzx edi, t_ref(i,rdi)
|
||||
shr eax, 16
|
||||
xor %1d, esi
|
||||
rol edi, 8
|
||||
xor %2d, edi
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
movzx esi, t_ref(i,rsi)
|
||||
movzx edi, t_ref(i,rdi)
|
||||
rol esi, 16
|
||||
rol edi, 24
|
||||
xor %3d, esi
|
||||
xor %4d, edi
|
||||
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
movzx esi, t_ref(i,rsi)
|
||||
movzx edi, t_ref(i,rdi)
|
||||
shr ebx, 16
|
||||
xor %2d, esi
|
||||
rol edi, 8
|
||||
xor %3d, edi
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
movzx esi, t_ref(i,rsi)
|
||||
movzx edi, t_ref(i,rdi)
|
||||
rol esi, 16
|
||||
rol edi, 24
|
||||
xor %4d, esi
|
||||
xor %1d, edi
|
||||
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
movzx esi, t_ref(i,rsi)
|
||||
movzx edi, t_ref(i,rdi)
|
||||
shr ecx, 16
|
||||
xor %3d, esi
|
||||
rol edi, 8
|
||||
xor %4d, edi
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
movzx esi, t_ref(i,rsi)
|
||||
movzx edi, t_ref(i,rdi)
|
||||
rol esi, 16
|
||||
rol edi, 24
|
||||
xor %1d, esi
|
||||
xor %2d, edi
|
||||
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
movzx esi, t_ref(i,rsi)
|
||||
movzx edi, t_ref(i,rdi)
|
||||
shr edx, 16
|
||||
xor %4d, esi
|
||||
rol edi, 8
|
||||
xor %1d, edi
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
movzx esi, t_ref(i,rsi)
|
||||
movzx edi, t_ref(i,rdi)
|
||||
rol esi, 16
|
||||
rol edi, 24
|
||||
xor %2d, esi
|
||||
xor %3d, edi
|
||||
%endmacro
|
||||
|
||||
%endif
|
||||
|
||||
%ifdef ENCRYPTION
|
||||
|
||||
global aes_ni(encrypt)
|
||||
%ifdef DLL_EXPORT
|
||||
export aes_ni(encrypt)
|
||||
%endif
|
||||
|
||||
section .data align=64 set_page
|
||||
align 64
|
||||
enc_tab:
|
||||
enc_vals u8
|
||||
%ifdef LAST_ROUND_TABLES
|
||||
enc_vals w8
|
||||
%endif
|
||||
|
||||
section .text align=16 set_page
|
||||
align 16
|
||||
|
||||
%ifdef _SEH_
|
||||
proc_frame aes_ni(encrypt)
|
||||
alloc_stack 7*8 ; 7 to align stack to 16 bytes
|
||||
save_reg rsi,4*8
|
||||
save_reg rdi,5*8
|
||||
save_reg rbx,1*8
|
||||
save_reg rbp,2*8
|
||||
save_reg r12,3*8
|
||||
end_prologue
|
||||
mov rdi, rcx ; input pointer
|
||||
mov [rsp+0*8], rdx ; output pointer
|
||||
%else
|
||||
aes_ni(encrypt):
|
||||
%ifdef __GNUC__
|
||||
sub rsp, 4*8 ; gnu/linux binary interface
|
||||
mov [rsp+0*8], rsi ; output pointer
|
||||
mov r8, rdx ; context
|
||||
%else
|
||||
sub rsp, 6*8 ; windows binary interface
|
||||
mov [rsp+4*8], rsi
|
||||
mov [rsp+5*8], rdi
|
||||
mov rdi, rcx ; input pointer
|
||||
mov [rsp+0*8], rdx ; output pointer
|
||||
%endif
|
||||
mov [rsp+1*8], rbx ; input pointer in rdi
|
||||
mov [rsp+2*8], rbp ; output pointer in [rsp]
|
||||
mov [rsp+3*8], r12 ; context in r8
|
||||
%endif
|
||||
|
||||
movzx esi, byte [kptr+4*KS_LENGTH]
|
||||
lea tptr, [rel enc_tab]
|
||||
sub kptr, fofs
|
||||
|
||||
mov eax, [rdi+0*4]
|
||||
mov ebx, [rdi+1*4]
|
||||
mov ecx, [rdi+2*4]
|
||||
mov edx, [rdi+3*4]
|
||||
|
||||
xor eax, [kptr+fofs]
|
||||
xor ebx, [kptr+fofs+4]
|
||||
xor ecx, [kptr+fofs+8]
|
||||
xor edx, [kptr+fofs+12]
|
||||
|
||||
lea kptr,[kptr+rsi]
|
||||
cmp esi, 10*16
|
||||
je .3
|
||||
cmp esi, 12*16
|
||||
je .2
|
||||
cmp esi, 14*16
|
||||
je .1
|
||||
mov rax, -1
|
||||
jmp .4
|
||||
|
||||
.1: ff_rnd r9, r10, r11, r12, 13
|
||||
ff_rnd r9, r10, r11, r12, 12
|
||||
.2: ff_rnd r9, r10, r11, r12, 11
|
||||
ff_rnd r9, r10, r11, r12, 10
|
||||
.3: ff_rnd r9, r10, r11, r12, 9
|
||||
ff_rnd r9, r10, r11, r12, 8
|
||||
ff_rnd r9, r10, r11, r12, 7
|
||||
ff_rnd r9, r10, r11, r12, 6
|
||||
ff_rnd r9, r10, r11, r12, 5
|
||||
ff_rnd r9, r10, r11, r12, 4
|
||||
ff_rnd r9, r10, r11, r12, 3
|
||||
ff_rnd r9, r10, r11, r12, 2
|
||||
ff_rnd r9, r10, r11, r12, 1
|
||||
fl_rnd r9, r10, r11, r12, 0
|
||||
|
||||
mov rbx, [rsp]
|
||||
mov [rbx], r9d
|
||||
mov [rbx+4], r10d
|
||||
mov [rbx+8], r11d
|
||||
mov [rbx+12], r12d
|
||||
xor rax, rax
|
||||
.4:
|
||||
mov rbx, [rsp+1*8]
|
||||
mov rbp, [rsp+2*8]
|
||||
mov r12, [rsp+3*8]
|
||||
%ifdef __GNUC__
|
||||
add rsp, 4*8
|
||||
ret
|
||||
%else
|
||||
mov rsi, [rsp+4*8]
|
||||
mov rdi, [rsp+5*8]
|
||||
%ifdef _SEH_
|
||||
add rsp, 7*8
|
||||
ret
|
||||
endproc_frame
|
||||
%else
|
||||
add rsp, 6*8
|
||||
ret
|
||||
%endif
|
||||
%endif
|
||||
|
||||
%endif
|
||||
|
||||
%ifdef DECRYPTION
|
||||
|
||||
global aes_ni(decrypt)
|
||||
%ifdef DLL_EXPORT
|
||||
export aes_ni(decrypt)
|
||||
%endif
|
||||
|
||||
section .data
|
||||
align 64
|
||||
dec_tab:
|
||||
dec_vals v8
|
||||
%ifdef LAST_ROUND_TABLES
|
||||
dec_vals w8
|
||||
%endif
|
||||
|
||||
section .text
|
||||
align 16
|
||||
|
||||
%ifdef _SEH_
|
||||
proc_frame aes_ni(decrypt)
|
||||
alloc_stack 7*8 ; 7 to align stack to 16 bytes
|
||||
save_reg rsi,4*8
|
||||
save_reg rdi,5*8
|
||||
save_reg rbx,1*8
|
||||
save_reg rbp,2*8
|
||||
save_reg r12,3*8
|
||||
end_prologue
|
||||
mov rdi, rcx ; input pointer
|
||||
mov [rsp+0*8], rdx ; output pointer
|
||||
%else
|
||||
aes_ni(decrypt):
|
||||
%ifdef __GNUC__
|
||||
sub rsp, 4*8 ; gnu/linux binary interface
|
||||
mov [rsp+0*8], rsi ; output pointer
|
||||
mov r8, rdx ; context
|
||||
%else
|
||||
sub rsp, 6*8 ; windows binary interface
|
||||
mov [rsp+4*8], rsi
|
||||
mov [rsp+5*8], rdi
|
||||
mov rdi, rcx ; input pointer
|
||||
mov [rsp+0*8], rdx ; output pointer
|
||||
%endif
|
||||
mov [rsp+1*8], rbx ; input pointer in rdi
|
||||
mov [rsp+2*8], rbp ; output pointer in [rsp]
|
||||
mov [rsp+3*8], r12 ; context in r8
|
||||
%endif
|
||||
|
||||
movzx esi, byte[kptr+4*KS_LENGTH]
|
||||
lea tptr, [rel dec_tab]
|
||||
sub kptr, rofs
|
||||
|
||||
mov eax, [rdi+0*4]
|
||||
mov ebx, [rdi+1*4]
|
||||
mov ecx, [rdi+2*4]
|
||||
mov edx, [rdi+3*4]
|
||||
|
||||
%ifdef AES_REV_DKS
|
||||
mov rdi, kptr
|
||||
lea kptr,[kptr+rsi]
|
||||
%else
|
||||
lea rdi,[kptr+rsi]
|
||||
%endif
|
||||
|
||||
xor eax, [rdi+rofs]
|
||||
xor ebx, [rdi+rofs+4]
|
||||
xor ecx, [rdi+rofs+8]
|
||||
xor edx, [rdi+rofs+12]
|
||||
|
||||
cmp esi, 10*16
|
||||
je .3
|
||||
cmp esi, 12*16
|
||||
je .2
|
||||
cmp esi, 14*16
|
||||
je .1
|
||||
mov rax, -1
|
||||
jmp .4
|
||||
|
||||
.1: ii_rnd r9, r10, r11, r12, 13
|
||||
ii_rnd r9, r10, r11, r12, 12
|
||||
.2: ii_rnd r9, r10, r11, r12, 11
|
||||
ii_rnd r9, r10, r11, r12, 10
|
||||
.3: ii_rnd r9, r10, r11, r12, 9
|
||||
ii_rnd r9, r10, r11, r12, 8
|
||||
ii_rnd r9, r10, r11, r12, 7
|
||||
ii_rnd r9, r10, r11, r12, 6
|
||||
ii_rnd r9, r10, r11, r12, 5
|
||||
ii_rnd r9, r10, r11, r12, 4
|
||||
ii_rnd r9, r10, r11, r12, 3
|
||||
ii_rnd r9, r10, r11, r12, 2
|
||||
ii_rnd r9, r10, r11, r12, 1
|
||||
il_rnd r9, r10, r11, r12, 0
|
||||
|
||||
mov rbx, [rsp]
|
||||
mov [rbx], r9d
|
||||
mov [rbx+4], r10d
|
||||
mov [rbx+8], r11d
|
||||
mov [rbx+12], r12d
|
||||
xor rax, rax
|
||||
.4: mov rbx, [rsp+1*8]
|
||||
mov rbp, [rsp+2*8]
|
||||
mov r12, [rsp+3*8]
|
||||
%ifdef __GNUC__
|
||||
add rsp, 4*8
|
||||
ret
|
||||
%else
|
||||
mov rsi, [rsp+4*8]
|
||||
mov rdi, [rsp+5*8]
|
||||
%ifdef _SEH_
|
||||
add rsp, 7*8
|
||||
ret
|
||||
endproc_frame
|
||||
%else
|
||||
add rsp, 6*8
|
||||
ret
|
||||
%endif
|
||||
%endif
|
||||
|
||||
%endif
|
||||
|
||||
end
|
||||
947
crypto/src/main/jni/final_key/aes/aes_modes.c
Normal file
947
crypto/src/main/jni/final_key/aes/aes_modes.c
Normal file
@@ -0,0 +1,947 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2013, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation.
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its operation, including, but not limited to, correctness
|
||||
and fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
|
||||
These subroutines implement multiple block AES modes for ECB, CBC, CFB,
|
||||
OFB and CTR encryption, The code provides support for the VIA Advanced
|
||||
Cryptography Engine (ACE).
|
||||
|
||||
NOTE: In the following subroutines, the AES contexts (ctx) must be
|
||||
16 byte aligned if VIA ACE is being used
|
||||
*/
|
||||
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include "aesopt.h"
|
||||
|
||||
#if defined( AES_MODES )
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#if defined( _MSC_VER ) && ( _MSC_VER > 800 )
|
||||
#pragma intrinsic(memcpy)
|
||||
#endif
|
||||
|
||||
#define BFR_BLOCKS 8
|
||||
|
||||
/* These values are used to detect long word alignment in order to */
|
||||
/* speed up some buffer operations. This facility may not work on */
|
||||
/* some machines so this define can be commented out if necessary */
|
||||
|
||||
#define FAST_BUFFER_OPERATIONS
|
||||
|
||||
#define lp32(x) ((uint32_t*)(x))
|
||||
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
|
||||
#include "aes_via_ace.h"
|
||||
|
||||
#pragma pack(16)
|
||||
|
||||
aligned_array(unsigned long, enc_gen_table, 12, 16) = NEH_ENC_GEN_DATA;
|
||||
aligned_array(unsigned long, enc_load_table, 12, 16) = NEH_ENC_LOAD_DATA;
|
||||
aligned_array(unsigned long, enc_hybrid_table, 12, 16) = NEH_ENC_HYBRID_DATA;
|
||||
aligned_array(unsigned long, dec_gen_table, 12, 16) = NEH_DEC_GEN_DATA;
|
||||
aligned_array(unsigned long, dec_load_table, 12, 16) = NEH_DEC_LOAD_DATA;
|
||||
aligned_array(unsigned long, dec_hybrid_table, 12, 16) = NEH_DEC_HYBRID_DATA;
|
||||
|
||||
/* NOTE: These control word macros must only be used after */
|
||||
/* a key has been set up because they depend on key size */
|
||||
/* See the VIA ACE documentation for key type information */
|
||||
/* and aes_via_ace.h for non-default NEH_KEY_TYPE values */
|
||||
|
||||
#ifndef NEH_KEY_TYPE
|
||||
# define NEH_KEY_TYPE NEH_HYBRID
|
||||
#endif
|
||||
|
||||
#if NEH_KEY_TYPE == NEH_LOAD
|
||||
#define kd_adr(c) ((uint8_t*)(c)->ks)
|
||||
#elif NEH_KEY_TYPE == NEH_GENERATE
|
||||
#define kd_adr(c) ((uint8_t*)(c)->ks + (c)->inf.b[0])
|
||||
#elif NEH_KEY_TYPE == NEH_HYBRID
|
||||
#define kd_adr(c) ((uint8_t*)(c)->ks + ((c)->inf.b[0] == 160 ? 160 : 0))
|
||||
#else
|
||||
#error no key type defined for VIA ACE
|
||||
#endif
|
||||
|
||||
#else
|
||||
|
||||
#define aligned_array(type, name, no, stride) type name[no]
|
||||
#define aligned_auto(type, name, no, stride) type name[no]
|
||||
|
||||
#endif
|
||||
|
||||
#if defined( _MSC_VER ) && _MSC_VER > 1200
|
||||
|
||||
#define via_cwd(cwd, ty, dir, len) \
|
||||
unsigned long* cwd = (dir##_##ty##_table + ((len - 128) >> 4))
|
||||
|
||||
#else
|
||||
|
||||
#define via_cwd(cwd, ty, dir, len) \
|
||||
aligned_auto(unsigned long, cwd, 4, 16); \
|
||||
cwd[1] = cwd[2] = cwd[3] = 0; \
|
||||
cwd[0] = neh_##dir##_##ty##_key(len)
|
||||
|
||||
#endif
|
||||
|
||||
/* test the code for detecting and setting pointer alignment */
|
||||
|
||||
AES_RETURN aes_test_alignment_detection(unsigned int n) /* 4 <= n <= 16 */
|
||||
{ uint8_t p[16];
|
||||
uint32_t i, count_eq = 0, count_neq = 0;
|
||||
|
||||
if(n < 4 || n > 16)
|
||||
return EXIT_FAILURE;
|
||||
|
||||
for(i = 0; i < n; ++i)
|
||||
{
|
||||
uint8_t *qf = ALIGN_FLOOR(p + i, n),
|
||||
*qh = ALIGN_CEIL(p + i, n);
|
||||
|
||||
if(qh == qf)
|
||||
++count_eq;
|
||||
else if(qh == qf + n)
|
||||
++count_neq;
|
||||
else
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
return (count_eq != 1 || count_neq != n - 1 ? EXIT_FAILURE : EXIT_SUCCESS);
|
||||
}
|
||||
|
||||
AES_RETURN aes_mode_reset(aes_encrypt_ctx ctx[1])
|
||||
{
|
||||
ctx->inf.b[2] = 0;
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
AES_RETURN aes_ecb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, const aes_encrypt_ctx ctx[1])
|
||||
{ int nb = len >> AES_BLOCK_SIZE_P2;
|
||||
|
||||
if(len & (AES_BLOCK_SIZE - 1))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
|
||||
if(ctx->inf.b[1] == 0xff)
|
||||
{ uint8_t *ksp = (uint8_t*)(ctx->ks);
|
||||
via_cwd(cwd, hybrid, enc, 2 * ctx->inf.b[0] - 192);
|
||||
|
||||
if(ALIGN_OFFSET( ctx, 16 ))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
if(!ALIGN_OFFSET( ibuf, 16 ) && !ALIGN_OFFSET( obuf, 16 ))
|
||||
{
|
||||
via_ecb_op5(ksp, cwd, ibuf, obuf, nb);
|
||||
}
|
||||
else
|
||||
{ aligned_auto(uint8_t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
|
||||
uint8_t *ip, *op;
|
||||
|
||||
while(nb)
|
||||
{
|
||||
int m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb);
|
||||
|
||||
ip = (ALIGN_OFFSET( ibuf, 16 ) ? buf : ibuf);
|
||||
op = (ALIGN_OFFSET( obuf, 16 ) ? buf : obuf);
|
||||
|
||||
if(ip != ibuf)
|
||||
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
|
||||
|
||||
via_ecb_op5(ksp, cwd, ip, op, m);
|
||||
|
||||
if(op != obuf)
|
||||
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
|
||||
|
||||
ibuf += m * AES_BLOCK_SIZE;
|
||||
obuf += m * AES_BLOCK_SIZE;
|
||||
nb -= m;
|
||||
}
|
||||
}
|
||||
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if !defined( ASSUME_VIA_ACE_PRESENT )
|
||||
while(nb--)
|
||||
{
|
||||
if(aes_encrypt(ibuf, obuf, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
}
|
||||
#endif
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
AES_RETURN aes_ecb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, const aes_decrypt_ctx ctx[1])
|
||||
{ int nb = len >> AES_BLOCK_SIZE_P2;
|
||||
|
||||
if(len & (AES_BLOCK_SIZE - 1))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
|
||||
if(ctx->inf.b[1] == 0xff)
|
||||
{ uint8_t *ksp = kd_adr(ctx);
|
||||
via_cwd(cwd, hybrid, dec, 2 * ctx->inf.b[0] - 192);
|
||||
|
||||
if(ALIGN_OFFSET( ctx, 16 ))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
if(!ALIGN_OFFSET( ibuf, 16 ) && !ALIGN_OFFSET( obuf, 16 ))
|
||||
{
|
||||
via_ecb_op5(ksp, cwd, ibuf, obuf, nb);
|
||||
}
|
||||
else
|
||||
{ aligned_auto(uint8_t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
|
||||
uint8_t *ip, *op;
|
||||
|
||||
while(nb)
|
||||
{
|
||||
int m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb);
|
||||
|
||||
ip = (ALIGN_OFFSET( ibuf, 16 ) ? buf : ibuf);
|
||||
op = (ALIGN_OFFSET( obuf, 16 ) ? buf : obuf);
|
||||
|
||||
if(ip != ibuf)
|
||||
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
|
||||
|
||||
via_ecb_op5(ksp, cwd, ip, op, m);
|
||||
|
||||
if(op != obuf)
|
||||
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
|
||||
|
||||
ibuf += m * AES_BLOCK_SIZE;
|
||||
obuf += m * AES_BLOCK_SIZE;
|
||||
nb -= m;
|
||||
}
|
||||
}
|
||||
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if !defined( ASSUME_VIA_ACE_PRESENT )
|
||||
while(nb--)
|
||||
{
|
||||
if(aes_decrypt(ibuf, obuf, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
}
|
||||
#endif
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
AES_RETURN aes_cbc_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, const aes_encrypt_ctx ctx[1])
|
||||
{ int nb = len >> AES_BLOCK_SIZE_P2;
|
||||
|
||||
if(len & (AES_BLOCK_SIZE - 1))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
|
||||
if(ctx->inf.b[1] == 0xff)
|
||||
{ uint8_t *ksp = (uint8_t*)(ctx->ks), *ivp = iv;
|
||||
aligned_auto(uint8_t, liv, AES_BLOCK_SIZE, 16);
|
||||
via_cwd(cwd, hybrid, enc, 2 * ctx->inf.b[0] - 192);
|
||||
|
||||
if(ALIGN_OFFSET( ctx, 16 ))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
if(ALIGN_OFFSET( iv, 16 )) /* ensure an aligned iv */
|
||||
{
|
||||
ivp = liv;
|
||||
memcpy(liv, iv, AES_BLOCK_SIZE);
|
||||
}
|
||||
|
||||
if(!ALIGN_OFFSET( ibuf, 16 ) && !ALIGN_OFFSET( obuf, 16 ) && !ALIGN_OFFSET( iv, 16 ))
|
||||
{
|
||||
via_cbc_op7(ksp, cwd, ibuf, obuf, nb, ivp, ivp);
|
||||
}
|
||||
else
|
||||
{ aligned_auto(uint8_t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
|
||||
uint8_t *ip, *op;
|
||||
|
||||
while(nb)
|
||||
{
|
||||
int m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb);
|
||||
|
||||
ip = (ALIGN_OFFSET( ibuf, 16 ) ? buf : ibuf);
|
||||
op = (ALIGN_OFFSET( obuf, 16 ) ? buf : obuf);
|
||||
|
||||
if(ip != ibuf)
|
||||
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
|
||||
|
||||
via_cbc_op7(ksp, cwd, ip, op, m, ivp, ivp);
|
||||
|
||||
if(op != obuf)
|
||||
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
|
||||
|
||||
ibuf += m * AES_BLOCK_SIZE;
|
||||
obuf += m * AES_BLOCK_SIZE;
|
||||
nb -= m;
|
||||
}
|
||||
}
|
||||
|
||||
if(iv != ivp)
|
||||
memcpy(iv, ivp, AES_BLOCK_SIZE);
|
||||
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if !defined( ASSUME_VIA_ACE_PRESENT )
|
||||
# ifdef FAST_BUFFER_OPERATIONS
|
||||
if(!ALIGN_OFFSET( ibuf, 4 ) && !ALIGN_OFFSET( iv, 4 ))
|
||||
while(nb--)
|
||||
{
|
||||
lp32(iv)[0] ^= lp32(ibuf)[0];
|
||||
lp32(iv)[1] ^= lp32(ibuf)[1];
|
||||
lp32(iv)[2] ^= lp32(ibuf)[2];
|
||||
lp32(iv)[3] ^= lp32(ibuf)[3];
|
||||
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
memcpy(obuf, iv, AES_BLOCK_SIZE);
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
}
|
||||
else
|
||||
# endif
|
||||
while(nb--)
|
||||
{
|
||||
iv[ 0] ^= ibuf[ 0]; iv[ 1] ^= ibuf[ 1];
|
||||
iv[ 2] ^= ibuf[ 2]; iv[ 3] ^= ibuf[ 3];
|
||||
iv[ 4] ^= ibuf[ 4]; iv[ 5] ^= ibuf[ 5];
|
||||
iv[ 6] ^= ibuf[ 6]; iv[ 7] ^= ibuf[ 7];
|
||||
iv[ 8] ^= ibuf[ 8]; iv[ 9] ^= ibuf[ 9];
|
||||
iv[10] ^= ibuf[10]; iv[11] ^= ibuf[11];
|
||||
iv[12] ^= ibuf[12]; iv[13] ^= ibuf[13];
|
||||
iv[14] ^= ibuf[14]; iv[15] ^= ibuf[15];
|
||||
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
memcpy(obuf, iv, AES_BLOCK_SIZE);
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
}
|
||||
#endif
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
AES_RETURN aes_cbc_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, const aes_decrypt_ctx ctx[1])
|
||||
{ unsigned char tmp[AES_BLOCK_SIZE];
|
||||
int nb = len >> AES_BLOCK_SIZE_P2;
|
||||
|
||||
if(len & (AES_BLOCK_SIZE - 1))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
|
||||
if(ctx->inf.b[1] == 0xff)
|
||||
{ uint8_t *ksp = kd_adr(ctx), *ivp = iv;
|
||||
aligned_auto(uint8_t, liv, AES_BLOCK_SIZE, 16);
|
||||
via_cwd(cwd, hybrid, dec, 2 * ctx->inf.b[0] - 192);
|
||||
|
||||
if(ALIGN_OFFSET( ctx, 16 ))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
if(ALIGN_OFFSET( iv, 16 )) /* ensure an aligned iv */
|
||||
{
|
||||
ivp = liv;
|
||||
memcpy(liv, iv, AES_BLOCK_SIZE);
|
||||
}
|
||||
|
||||
if(!ALIGN_OFFSET( ibuf, 16 ) && !ALIGN_OFFSET( obuf, 16 ) && !ALIGN_OFFSET( iv, 16 ))
|
||||
{
|
||||
via_cbc_op6(ksp, cwd, ibuf, obuf, nb, ivp);
|
||||
}
|
||||
else
|
||||
{ aligned_auto(uint8_t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
|
||||
uint8_t *ip, *op;
|
||||
|
||||
while(nb)
|
||||
{
|
||||
int m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb);
|
||||
|
||||
ip = (ALIGN_OFFSET( ibuf, 16 ) ? buf : ibuf);
|
||||
op = (ALIGN_OFFSET( obuf, 16 ) ? buf : obuf);
|
||||
|
||||
if(ip != ibuf)
|
||||
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
|
||||
|
||||
via_cbc_op6(ksp, cwd, ip, op, m, ivp);
|
||||
|
||||
if(op != obuf)
|
||||
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
|
||||
|
||||
ibuf += m * AES_BLOCK_SIZE;
|
||||
obuf += m * AES_BLOCK_SIZE;
|
||||
nb -= m;
|
||||
}
|
||||
}
|
||||
|
||||
if(iv != ivp)
|
||||
memcpy(iv, ivp, AES_BLOCK_SIZE);
|
||||
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if !defined( ASSUME_VIA_ACE_PRESENT )
|
||||
# ifdef FAST_BUFFER_OPERATIONS
|
||||
if(!ALIGN_OFFSET( obuf, 4 ) && !ALIGN_OFFSET( iv, 4 ))
|
||||
while(nb--)
|
||||
{
|
||||
memcpy(tmp, ibuf, AES_BLOCK_SIZE);
|
||||
if(aes_decrypt(ibuf, obuf, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
lp32(obuf)[0] ^= lp32(iv)[0];
|
||||
lp32(obuf)[1] ^= lp32(iv)[1];
|
||||
lp32(obuf)[2] ^= lp32(iv)[2];
|
||||
lp32(obuf)[3] ^= lp32(iv)[3];
|
||||
memcpy(iv, tmp, AES_BLOCK_SIZE);
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
}
|
||||
else
|
||||
# endif
|
||||
while(nb--)
|
||||
{
|
||||
memcpy(tmp, ibuf, AES_BLOCK_SIZE);
|
||||
if(aes_decrypt(ibuf, obuf, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
obuf[ 0] ^= iv[ 0]; obuf[ 1] ^= iv[ 1];
|
||||
obuf[ 2] ^= iv[ 2]; obuf[ 3] ^= iv[ 3];
|
||||
obuf[ 4] ^= iv[ 4]; obuf[ 5] ^= iv[ 5];
|
||||
obuf[ 6] ^= iv[ 6]; obuf[ 7] ^= iv[ 7];
|
||||
obuf[ 8] ^= iv[ 8]; obuf[ 9] ^= iv[ 9];
|
||||
obuf[10] ^= iv[10]; obuf[11] ^= iv[11];
|
||||
obuf[12] ^= iv[12]; obuf[13] ^= iv[13];
|
||||
obuf[14] ^= iv[14]; obuf[15] ^= iv[15];
|
||||
memcpy(iv, tmp, AES_BLOCK_SIZE);
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
}
|
||||
#endif
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
AES_RETURN aes_cfb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx ctx[1])
|
||||
{ int cnt = 0, b_pos = (int)ctx->inf.b[2], nb;
|
||||
|
||||
if(b_pos) /* complete any partial block */
|
||||
{
|
||||
while(b_pos < AES_BLOCK_SIZE && cnt < len)
|
||||
{
|
||||
*obuf++ = (iv[b_pos++] ^= *ibuf++);
|
||||
cnt++;
|
||||
}
|
||||
|
||||
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
|
||||
}
|
||||
|
||||
if((nb = (len - cnt) >> AES_BLOCK_SIZE_P2) != 0) /* process whole blocks */
|
||||
{
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
|
||||
if(ctx->inf.b[1] == 0xff)
|
||||
{ int m;
|
||||
uint8_t *ksp = (uint8_t*)(ctx->ks), *ivp = iv;
|
||||
aligned_auto(uint8_t, liv, AES_BLOCK_SIZE, 16);
|
||||
via_cwd(cwd, hybrid, enc, 2 * ctx->inf.b[0] - 192);
|
||||
|
||||
if(ALIGN_OFFSET( ctx, 16 ))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
if(ALIGN_OFFSET( iv, 16 )) /* ensure an aligned iv */
|
||||
{
|
||||
ivp = liv;
|
||||
memcpy(liv, iv, AES_BLOCK_SIZE);
|
||||
}
|
||||
|
||||
if(!ALIGN_OFFSET( ibuf, 16 ) && !ALIGN_OFFSET( obuf, 16 ))
|
||||
{
|
||||
via_cfb_op7(ksp, cwd, ibuf, obuf, nb, ivp, ivp);
|
||||
ibuf += nb * AES_BLOCK_SIZE;
|
||||
obuf += nb * AES_BLOCK_SIZE;
|
||||
cnt += nb * AES_BLOCK_SIZE;
|
||||
}
|
||||
else /* input, output or both are unaligned */
|
||||
{ aligned_auto(uint8_t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
|
||||
uint8_t *ip, *op;
|
||||
|
||||
while(nb)
|
||||
{
|
||||
m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb), nb -= m;
|
||||
|
||||
ip = (ALIGN_OFFSET( ibuf, 16 ) ? buf : ibuf);
|
||||
op = (ALIGN_OFFSET( obuf, 16 ) ? buf : obuf);
|
||||
|
||||
if(ip != ibuf)
|
||||
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
|
||||
|
||||
via_cfb_op7(ksp, cwd, ip, op, m, ivp, ivp);
|
||||
|
||||
if(op != obuf)
|
||||
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
|
||||
|
||||
ibuf += m * AES_BLOCK_SIZE;
|
||||
obuf += m * AES_BLOCK_SIZE;
|
||||
cnt += m * AES_BLOCK_SIZE;
|
||||
}
|
||||
}
|
||||
|
||||
if(ivp != iv)
|
||||
memcpy(iv, ivp, AES_BLOCK_SIZE);
|
||||
}
|
||||
#else
|
||||
# ifdef FAST_BUFFER_OPERATIONS
|
||||
if(!ALIGN_OFFSET( ibuf, 4 ) && !ALIGN_OFFSET( obuf, 4 ) && !ALIGN_OFFSET( iv, 4 ))
|
||||
while(cnt + AES_BLOCK_SIZE <= len)
|
||||
{
|
||||
assert(b_pos == 0);
|
||||
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
lp32(obuf)[0] = lp32(iv)[0] ^= lp32(ibuf)[0];
|
||||
lp32(obuf)[1] = lp32(iv)[1] ^= lp32(ibuf)[1];
|
||||
lp32(obuf)[2] = lp32(iv)[2] ^= lp32(ibuf)[2];
|
||||
lp32(obuf)[3] = lp32(iv)[3] ^= lp32(ibuf)[3];
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
cnt += AES_BLOCK_SIZE;
|
||||
}
|
||||
else
|
||||
# endif
|
||||
while(cnt + AES_BLOCK_SIZE <= len)
|
||||
{
|
||||
assert(b_pos == 0);
|
||||
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
obuf[ 0] = iv[ 0] ^= ibuf[ 0]; obuf[ 1] = iv[ 1] ^= ibuf[ 1];
|
||||
obuf[ 2] = iv[ 2] ^= ibuf[ 2]; obuf[ 3] = iv[ 3] ^= ibuf[ 3];
|
||||
obuf[ 4] = iv[ 4] ^= ibuf[ 4]; obuf[ 5] = iv[ 5] ^= ibuf[ 5];
|
||||
obuf[ 6] = iv[ 6] ^= ibuf[ 6]; obuf[ 7] = iv[ 7] ^= ibuf[ 7];
|
||||
obuf[ 8] = iv[ 8] ^= ibuf[ 8]; obuf[ 9] = iv[ 9] ^= ibuf[ 9];
|
||||
obuf[10] = iv[10] ^= ibuf[10]; obuf[11] = iv[11] ^= ibuf[11];
|
||||
obuf[12] = iv[12] ^= ibuf[12]; obuf[13] = iv[13] ^= ibuf[13];
|
||||
obuf[14] = iv[14] ^= ibuf[14]; obuf[15] = iv[15] ^= ibuf[15];
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
cnt += AES_BLOCK_SIZE;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
while(cnt < len)
|
||||
{
|
||||
if(!b_pos && aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
|
||||
while(cnt < len && b_pos < AES_BLOCK_SIZE)
|
||||
{
|
||||
*obuf++ = (iv[b_pos++] ^= *ibuf++);
|
||||
cnt++;
|
||||
}
|
||||
|
||||
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
|
||||
}
|
||||
|
||||
ctx->inf.b[2] = (uint8_t)b_pos;
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
AES_RETURN aes_cfb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx ctx[1])
|
||||
{ int cnt = 0, b_pos = (int)ctx->inf.b[2], nb;
|
||||
|
||||
if(b_pos) /* complete any partial block */
|
||||
{ uint8_t t;
|
||||
|
||||
while(b_pos < AES_BLOCK_SIZE && cnt < len)
|
||||
{
|
||||
t = *ibuf++;
|
||||
*obuf++ = t ^ iv[b_pos];
|
||||
iv[b_pos++] = t;
|
||||
cnt++;
|
||||
}
|
||||
|
||||
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
|
||||
}
|
||||
|
||||
if((nb = (len - cnt) >> AES_BLOCK_SIZE_P2) != 0) /* process whole blocks */
|
||||
{
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
|
||||
if(ctx->inf.b[1] == 0xff)
|
||||
{ int m;
|
||||
uint8_t *ksp = (uint8_t*)(ctx->ks), *ivp = iv;
|
||||
aligned_auto(uint8_t, liv, AES_BLOCK_SIZE, 16);
|
||||
via_cwd(cwd, hybrid, dec, 2 * ctx->inf.b[0] - 192);
|
||||
|
||||
if(ALIGN_OFFSET( ctx, 16 ))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
if(ALIGN_OFFSET( iv, 16 )) /* ensure an aligned iv */
|
||||
{
|
||||
ivp = liv;
|
||||
memcpy(liv, iv, AES_BLOCK_SIZE);
|
||||
}
|
||||
|
||||
if(!ALIGN_OFFSET( ibuf, 16 ) && !ALIGN_OFFSET( obuf, 16 ))
|
||||
{
|
||||
via_cfb_op6(ksp, cwd, ibuf, obuf, nb, ivp);
|
||||
ibuf += nb * AES_BLOCK_SIZE;
|
||||
obuf += nb * AES_BLOCK_SIZE;
|
||||
cnt += nb * AES_BLOCK_SIZE;
|
||||
}
|
||||
else /* input, output or both are unaligned */
|
||||
{ aligned_auto(uint8_t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
|
||||
uint8_t *ip, *op;
|
||||
|
||||
while(nb)
|
||||
{
|
||||
m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb), nb -= m;
|
||||
|
||||
ip = (ALIGN_OFFSET( ibuf, 16 ) ? buf : ibuf);
|
||||
op = (ALIGN_OFFSET( obuf, 16 ) ? buf : obuf);
|
||||
|
||||
if(ip != ibuf) /* input buffer is not aligned */
|
||||
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
|
||||
|
||||
via_cfb_op6(ksp, cwd, ip, op, m, ivp);
|
||||
|
||||
if(op != obuf) /* output buffer is not aligned */
|
||||
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
|
||||
|
||||
ibuf += m * AES_BLOCK_SIZE;
|
||||
obuf += m * AES_BLOCK_SIZE;
|
||||
cnt += m * AES_BLOCK_SIZE;
|
||||
}
|
||||
}
|
||||
|
||||
if(ivp != iv)
|
||||
memcpy(iv, ivp, AES_BLOCK_SIZE);
|
||||
}
|
||||
#else
|
||||
# ifdef FAST_BUFFER_OPERATIONS
|
||||
if(!ALIGN_OFFSET( ibuf, 4 ) && !ALIGN_OFFSET( obuf, 4 ) &&!ALIGN_OFFSET( iv, 4 ))
|
||||
while(cnt + AES_BLOCK_SIZE <= len)
|
||||
{ uint32_t t;
|
||||
|
||||
assert(b_pos == 0);
|
||||
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
t = lp32(ibuf)[0], lp32(obuf)[0] = t ^ lp32(iv)[0], lp32(iv)[0] = t;
|
||||
t = lp32(ibuf)[1], lp32(obuf)[1] = t ^ lp32(iv)[1], lp32(iv)[1] = t;
|
||||
t = lp32(ibuf)[2], lp32(obuf)[2] = t ^ lp32(iv)[2], lp32(iv)[2] = t;
|
||||
t = lp32(ibuf)[3], lp32(obuf)[3] = t ^ lp32(iv)[3], lp32(iv)[3] = t;
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
cnt += AES_BLOCK_SIZE;
|
||||
}
|
||||
else
|
||||
# endif
|
||||
while(cnt + AES_BLOCK_SIZE <= len)
|
||||
{ uint8_t t;
|
||||
|
||||
assert(b_pos == 0);
|
||||
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
t = ibuf[ 0], obuf[ 0] = t ^ iv[ 0], iv[ 0] = t;
|
||||
t = ibuf[ 1], obuf[ 1] = t ^ iv[ 1], iv[ 1] = t;
|
||||
t = ibuf[ 2], obuf[ 2] = t ^ iv[ 2], iv[ 2] = t;
|
||||
t = ibuf[ 3], obuf[ 3] = t ^ iv[ 3], iv[ 3] = t;
|
||||
t = ibuf[ 4], obuf[ 4] = t ^ iv[ 4], iv[ 4] = t;
|
||||
t = ibuf[ 5], obuf[ 5] = t ^ iv[ 5], iv[ 5] = t;
|
||||
t = ibuf[ 6], obuf[ 6] = t ^ iv[ 6], iv[ 6] = t;
|
||||
t = ibuf[ 7], obuf[ 7] = t ^ iv[ 7], iv[ 7] = t;
|
||||
t = ibuf[ 8], obuf[ 8] = t ^ iv[ 8], iv[ 8] = t;
|
||||
t = ibuf[ 9], obuf[ 9] = t ^ iv[ 9], iv[ 9] = t;
|
||||
t = ibuf[10], obuf[10] = t ^ iv[10], iv[10] = t;
|
||||
t = ibuf[11], obuf[11] = t ^ iv[11], iv[11] = t;
|
||||
t = ibuf[12], obuf[12] = t ^ iv[12], iv[12] = t;
|
||||
t = ibuf[13], obuf[13] = t ^ iv[13], iv[13] = t;
|
||||
t = ibuf[14], obuf[14] = t ^ iv[14], iv[14] = t;
|
||||
t = ibuf[15], obuf[15] = t ^ iv[15], iv[15] = t;
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
cnt += AES_BLOCK_SIZE;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
while(cnt < len)
|
||||
{ uint8_t t;
|
||||
|
||||
if(!b_pos && aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
|
||||
while(cnt < len && b_pos < AES_BLOCK_SIZE)
|
||||
{
|
||||
t = *ibuf++;
|
||||
*obuf++ = t ^ iv[b_pos];
|
||||
iv[b_pos++] = t;
|
||||
cnt++;
|
||||
}
|
||||
|
||||
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
|
||||
}
|
||||
|
||||
ctx->inf.b[2] = (uint8_t)b_pos;
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
AES_RETURN aes_ofb_crypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx ctx[1])
|
||||
{ int cnt = 0, b_pos = (int)ctx->inf.b[2], nb;
|
||||
|
||||
if(b_pos) /* complete any partial block */
|
||||
{
|
||||
while(b_pos < AES_BLOCK_SIZE && cnt < len)
|
||||
{
|
||||
*obuf++ = iv[b_pos++] ^ *ibuf++;
|
||||
cnt++;
|
||||
}
|
||||
|
||||
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
|
||||
}
|
||||
|
||||
if((nb = (len - cnt) >> AES_BLOCK_SIZE_P2) != 0) /* process whole blocks */
|
||||
{
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
|
||||
if(ctx->inf.b[1] == 0xff)
|
||||
{ int m;
|
||||
uint8_t *ksp = (uint8_t*)(ctx->ks), *ivp = iv;
|
||||
aligned_auto(uint8_t, liv, AES_BLOCK_SIZE, 16);
|
||||
via_cwd(cwd, hybrid, enc, 2 * ctx->inf.b[0] - 192);
|
||||
|
||||
if(ALIGN_OFFSET( ctx, 16 ))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
if(ALIGN_OFFSET( iv, 16 )) /* ensure an aligned iv */
|
||||
{
|
||||
ivp = liv;
|
||||
memcpy(liv, iv, AES_BLOCK_SIZE);
|
||||
}
|
||||
|
||||
if(!ALIGN_OFFSET( ibuf, 16 ) && !ALIGN_OFFSET( obuf, 16 ))
|
||||
{
|
||||
via_ofb_op6(ksp, cwd, ibuf, obuf, nb, ivp);
|
||||
ibuf += nb * AES_BLOCK_SIZE;
|
||||
obuf += nb * AES_BLOCK_SIZE;
|
||||
cnt += nb * AES_BLOCK_SIZE;
|
||||
}
|
||||
else /* input, output or both are unaligned */
|
||||
{ aligned_auto(uint8_t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
|
||||
uint8_t *ip, *op;
|
||||
|
||||
while(nb)
|
||||
{
|
||||
m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb), nb -= m;
|
||||
|
||||
ip = (ALIGN_OFFSET( ibuf, 16 ) ? buf : ibuf);
|
||||
op = (ALIGN_OFFSET( obuf, 16 ) ? buf : obuf);
|
||||
|
||||
if(ip != ibuf)
|
||||
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
|
||||
|
||||
via_ofb_op6(ksp, cwd, ip, op, m, ivp);
|
||||
|
||||
if(op != obuf)
|
||||
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
|
||||
|
||||
ibuf += m * AES_BLOCK_SIZE;
|
||||
obuf += m * AES_BLOCK_SIZE;
|
||||
cnt += m * AES_BLOCK_SIZE;
|
||||
}
|
||||
}
|
||||
|
||||
if(ivp != iv)
|
||||
memcpy(iv, ivp, AES_BLOCK_SIZE);
|
||||
}
|
||||
#else
|
||||
# ifdef FAST_BUFFER_OPERATIONS
|
||||
if(!ALIGN_OFFSET( ibuf, 4 ) && !ALIGN_OFFSET( obuf, 4 ) && !ALIGN_OFFSET( iv, 4 ))
|
||||
while(cnt + AES_BLOCK_SIZE <= len)
|
||||
{
|
||||
assert(b_pos == 0);
|
||||
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
lp32(obuf)[0] = lp32(iv)[0] ^ lp32(ibuf)[0];
|
||||
lp32(obuf)[1] = lp32(iv)[1] ^ lp32(ibuf)[1];
|
||||
lp32(obuf)[2] = lp32(iv)[2] ^ lp32(ibuf)[2];
|
||||
lp32(obuf)[3] = lp32(iv)[3] ^ lp32(ibuf)[3];
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
cnt += AES_BLOCK_SIZE;
|
||||
}
|
||||
else
|
||||
# endif
|
||||
while(cnt + AES_BLOCK_SIZE <= len)
|
||||
{
|
||||
assert(b_pos == 0);
|
||||
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
obuf[ 0] = iv[ 0] ^ ibuf[ 0]; obuf[ 1] = iv[ 1] ^ ibuf[ 1];
|
||||
obuf[ 2] = iv[ 2] ^ ibuf[ 2]; obuf[ 3] = iv[ 3] ^ ibuf[ 3];
|
||||
obuf[ 4] = iv[ 4] ^ ibuf[ 4]; obuf[ 5] = iv[ 5] ^ ibuf[ 5];
|
||||
obuf[ 6] = iv[ 6] ^ ibuf[ 6]; obuf[ 7] = iv[ 7] ^ ibuf[ 7];
|
||||
obuf[ 8] = iv[ 8] ^ ibuf[ 8]; obuf[ 9] = iv[ 9] ^ ibuf[ 9];
|
||||
obuf[10] = iv[10] ^ ibuf[10]; obuf[11] = iv[11] ^ ibuf[11];
|
||||
obuf[12] = iv[12] ^ ibuf[12]; obuf[13] = iv[13] ^ ibuf[13];
|
||||
obuf[14] = iv[14] ^ ibuf[14]; obuf[15] = iv[15] ^ ibuf[15];
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
cnt += AES_BLOCK_SIZE;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
while(cnt < len)
|
||||
{
|
||||
if(!b_pos && aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
|
||||
while(cnt < len && b_pos < AES_BLOCK_SIZE)
|
||||
{
|
||||
*obuf++ = iv[b_pos++] ^ *ibuf++;
|
||||
cnt++;
|
||||
}
|
||||
|
||||
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
|
||||
}
|
||||
|
||||
ctx->inf.b[2] = (uint8_t)b_pos;
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#define BFR_LENGTH (BFR_BLOCKS * AES_BLOCK_SIZE)
|
||||
|
||||
AES_RETURN aes_ctr_crypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *cbuf, cbuf_inc ctr_inc, aes_encrypt_ctx ctx[1])
|
||||
{ unsigned char *ip;
|
||||
int i, blen, b_pos = (int)(ctx->inf.b[2]);
|
||||
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
aligned_auto(uint8_t, buf, BFR_LENGTH, 16);
|
||||
if(ctx->inf.b[1] == 0xff && ALIGN_OFFSET( ctx, 16 ))
|
||||
return EXIT_FAILURE;
|
||||
#else
|
||||
uint8_t buf[BFR_LENGTH];
|
||||
#endif
|
||||
|
||||
if(b_pos)
|
||||
{
|
||||
memcpy(buf, cbuf, AES_BLOCK_SIZE);
|
||||
if(aes_ecb_encrypt(buf, buf, AES_BLOCK_SIZE, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
|
||||
while(b_pos < AES_BLOCK_SIZE && len)
|
||||
{
|
||||
*obuf++ = *ibuf++ ^ buf[b_pos++];
|
||||
--len;
|
||||
}
|
||||
|
||||
if(len)
|
||||
ctr_inc(cbuf), b_pos = 0;
|
||||
}
|
||||
|
||||
while(len)
|
||||
{
|
||||
blen = (len > BFR_LENGTH ? BFR_LENGTH : len), len -= blen;
|
||||
|
||||
for(i = 0, ip = buf; i < (blen >> AES_BLOCK_SIZE_P2); ++i)
|
||||
{
|
||||
memcpy(ip, cbuf, AES_BLOCK_SIZE);
|
||||
ctr_inc(cbuf);
|
||||
ip += AES_BLOCK_SIZE;
|
||||
}
|
||||
|
||||
if(blen & (AES_BLOCK_SIZE - 1))
|
||||
memcpy(ip, cbuf, AES_BLOCK_SIZE), i++;
|
||||
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
if(ctx->inf.b[1] == 0xff)
|
||||
{
|
||||
via_cwd(cwd, hybrid, enc, 2 * ctx->inf.b[0] - 192);
|
||||
via_ecb_op5((ctx->ks), cwd, buf, buf, i);
|
||||
}
|
||||
else
|
||||
#endif
|
||||
if(aes_ecb_encrypt(buf, buf, i * AES_BLOCK_SIZE, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
|
||||
i = 0; ip = buf;
|
||||
# ifdef FAST_BUFFER_OPERATIONS
|
||||
if(!ALIGN_OFFSET( ibuf, 4 ) && !ALIGN_OFFSET( obuf, 4 ) && !ALIGN_OFFSET( ip, 4 ))
|
||||
while(i + AES_BLOCK_SIZE <= blen)
|
||||
{
|
||||
lp32(obuf)[0] = lp32(ibuf)[0] ^ lp32(ip)[0];
|
||||
lp32(obuf)[1] = lp32(ibuf)[1] ^ lp32(ip)[1];
|
||||
lp32(obuf)[2] = lp32(ibuf)[2] ^ lp32(ip)[2];
|
||||
lp32(obuf)[3] = lp32(ibuf)[3] ^ lp32(ip)[3];
|
||||
i += AES_BLOCK_SIZE;
|
||||
ip += AES_BLOCK_SIZE;
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
}
|
||||
else
|
||||
#endif
|
||||
while(i + AES_BLOCK_SIZE <= blen)
|
||||
{
|
||||
obuf[ 0] = ibuf[ 0] ^ ip[ 0]; obuf[ 1] = ibuf[ 1] ^ ip[ 1];
|
||||
obuf[ 2] = ibuf[ 2] ^ ip[ 2]; obuf[ 3] = ibuf[ 3] ^ ip[ 3];
|
||||
obuf[ 4] = ibuf[ 4] ^ ip[ 4]; obuf[ 5] = ibuf[ 5] ^ ip[ 5];
|
||||
obuf[ 6] = ibuf[ 6] ^ ip[ 6]; obuf[ 7] = ibuf[ 7] ^ ip[ 7];
|
||||
obuf[ 8] = ibuf[ 8] ^ ip[ 8]; obuf[ 9] = ibuf[ 9] ^ ip[ 9];
|
||||
obuf[10] = ibuf[10] ^ ip[10]; obuf[11] = ibuf[11] ^ ip[11];
|
||||
obuf[12] = ibuf[12] ^ ip[12]; obuf[13] = ibuf[13] ^ ip[13];
|
||||
obuf[14] = ibuf[14] ^ ip[14]; obuf[15] = ibuf[15] ^ ip[15];
|
||||
i += AES_BLOCK_SIZE;
|
||||
ip += AES_BLOCK_SIZE;
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
}
|
||||
|
||||
while(i++ < blen)
|
||||
*obuf++ = *ibuf++ ^ ip[b_pos++];
|
||||
}
|
||||
|
||||
ctx->inf.b[2] = (uint8_t)b_pos;
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
547
crypto/src/main/jni/final_key/aes/aes_via_ace.h
Normal file
547
crypto/src/main/jni/final_key/aes/aes_via_ace.h
Normal file
@@ -0,0 +1,547 @@
|
||||
/*
|
||||
Copyright (c) 1998-2013, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation.
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its operation, including, but not limited to, correctness
|
||||
and fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
*/
|
||||
|
||||
#ifndef AES_VIA_ACE_H
|
||||
#define AES_VIA_ACE_H
|
||||
|
||||
#if defined( _MSC_VER )
|
||||
# define INLINE __inline
|
||||
#elif defined( __GNUC__ )
|
||||
# define INLINE static inline
|
||||
#else
|
||||
# error VIA ACE requires Microsoft or GNU C
|
||||
#endif
|
||||
|
||||
#define NEH_GENERATE 1
|
||||
#define NEH_LOAD 2
|
||||
#define NEH_HYBRID 3
|
||||
|
||||
#define MAX_READ_ATTEMPTS 1000
|
||||
|
||||
/* VIA Nehemiah RNG and ACE Feature Mask Values */
|
||||
|
||||
#define NEH_CPU_IS_VIA 0x00000001
|
||||
#define NEH_CPU_READ 0x00000010
|
||||
#define NEH_CPU_MASK 0x00000011
|
||||
|
||||
#define NEH_RNG_PRESENT 0x00000004
|
||||
#define NEH_RNG_ENABLED 0x00000008
|
||||
#define NEH_ACE_PRESENT 0x00000040
|
||||
#define NEH_ACE_ENABLED 0x00000080
|
||||
#define NEH_RNG_FLAGS (NEH_RNG_PRESENT | NEH_RNG_ENABLED)
|
||||
#define NEH_ACE_FLAGS (NEH_ACE_PRESENT | NEH_ACE_ENABLED)
|
||||
#define NEH_FLAGS_MASK (NEH_RNG_FLAGS | NEH_ACE_FLAGS)
|
||||
|
||||
/* VIA Nehemiah Advanced Cryptography Engine (ACE) Control Word Values */
|
||||
|
||||
#define NEH_GEN_KEY 0x00000000 /* generate key schedule */
|
||||
#define NEH_LOAD_KEY 0x00000080 /* load schedule from memory */
|
||||
#define NEH_ENCRYPT 0x00000000 /* encryption */
|
||||
#define NEH_DECRYPT 0x00000200 /* decryption */
|
||||
#define NEH_KEY128 0x00000000+0x0a /* 128 bit key */
|
||||
#define NEH_KEY192 0x00000400+0x0c /* 192 bit key */
|
||||
#define NEH_KEY256 0x00000800+0x0e /* 256 bit key */
|
||||
|
||||
#define NEH_ENC_GEN (NEH_ENCRYPT | NEH_GEN_KEY)
|
||||
#define NEH_DEC_GEN (NEH_DECRYPT | NEH_GEN_KEY)
|
||||
#define NEH_ENC_LOAD (NEH_ENCRYPT | NEH_LOAD_KEY)
|
||||
#define NEH_DEC_LOAD (NEH_DECRYPT | NEH_LOAD_KEY)
|
||||
|
||||
#define NEH_ENC_GEN_DATA {\
|
||||
NEH_ENC_GEN | NEH_KEY128, 0, 0, 0,\
|
||||
NEH_ENC_GEN | NEH_KEY192, 0, 0, 0,\
|
||||
NEH_ENC_GEN | NEH_KEY256, 0, 0, 0 }
|
||||
|
||||
#define NEH_ENC_LOAD_DATA {\
|
||||
NEH_ENC_LOAD | NEH_KEY128, 0, 0, 0,\
|
||||
NEH_ENC_LOAD | NEH_KEY192, 0, 0, 0,\
|
||||
NEH_ENC_LOAD | NEH_KEY256, 0, 0, 0 }
|
||||
|
||||
#define NEH_ENC_HYBRID_DATA {\
|
||||
NEH_ENC_GEN | NEH_KEY128, 0, 0, 0,\
|
||||
NEH_ENC_LOAD | NEH_KEY192, 0, 0, 0,\
|
||||
NEH_ENC_LOAD | NEH_KEY256, 0, 0, 0 }
|
||||
|
||||
#define NEH_DEC_GEN_DATA {\
|
||||
NEH_DEC_GEN | NEH_KEY128, 0, 0, 0,\
|
||||
NEH_DEC_GEN | NEH_KEY192, 0, 0, 0,\
|
||||
NEH_DEC_GEN | NEH_KEY256, 0, 0, 0 }
|
||||
|
||||
#define NEH_DEC_LOAD_DATA {\
|
||||
NEH_DEC_LOAD | NEH_KEY128, 0, 0, 0,\
|
||||
NEH_DEC_LOAD | NEH_KEY192, 0, 0, 0,\
|
||||
NEH_DEC_LOAD | NEH_KEY256, 0, 0, 0 }
|
||||
|
||||
#define NEH_DEC_HYBRID_DATA {\
|
||||
NEH_DEC_GEN | NEH_KEY128, 0, 0, 0,\
|
||||
NEH_DEC_LOAD | NEH_KEY192, 0, 0, 0,\
|
||||
NEH_DEC_LOAD | NEH_KEY256, 0, 0, 0 }
|
||||
|
||||
#define neh_enc_gen_key(x) ((x) == 128 ? (NEH_ENC_GEN | NEH_KEY128) : \
|
||||
(x) == 192 ? (NEH_ENC_GEN | NEH_KEY192) : (NEH_ENC_GEN | NEH_KEY256))
|
||||
|
||||
#define neh_enc_load_key(x) ((x) == 128 ? (NEH_ENC_LOAD | NEH_KEY128) : \
|
||||
(x) == 192 ? (NEH_ENC_LOAD | NEH_KEY192) : (NEH_ENC_LOAD | NEH_KEY256))
|
||||
|
||||
#define neh_enc_hybrid_key(x) ((x) == 128 ? (NEH_ENC_GEN | NEH_KEY128) : \
|
||||
(x) == 192 ? (NEH_ENC_LOAD | NEH_KEY192) : (NEH_ENC_LOAD | NEH_KEY256))
|
||||
|
||||
#define neh_dec_gen_key(x) ((x) == 128 ? (NEH_DEC_GEN | NEH_KEY128) : \
|
||||
(x) == 192 ? (NEH_DEC_GEN | NEH_KEY192) : (NEH_DEC_GEN | NEH_KEY256))
|
||||
|
||||
#define neh_dec_load_key(x) ((x) == 128 ? (NEH_DEC_LOAD | NEH_KEY128) : \
|
||||
(x) == 192 ? (NEH_DEC_LOAD | NEH_KEY192) : (NEH_DEC_LOAD | NEH_KEY256))
|
||||
|
||||
#define neh_dec_hybrid_key(x) ((x) == 128 ? (NEH_DEC_GEN | NEH_KEY128) : \
|
||||
(x) == 192 ? (NEH_DEC_LOAD | NEH_KEY192) : (NEH_DEC_LOAD | NEH_KEY256))
|
||||
|
||||
#if defined( _MSC_VER ) && ( _MSC_VER > 1200 )
|
||||
#define aligned_auto(type, name, no, stride) __declspec(align(stride)) type name[no]
|
||||
#else
|
||||
#define aligned_auto(type, name, no, stride) \
|
||||
unsigned char _##name[no * sizeof(type) + stride]; \
|
||||
type *name = (type*)(16 * ((((unsigned long)(_##name)) + stride - 1) / stride))
|
||||
#endif
|
||||
|
||||
#if defined( _MSC_VER ) && ( _MSC_VER > 1200 )
|
||||
#define aligned_array(type, name, no, stride) __declspec(align(stride)) type name[no]
|
||||
#elif defined( __GNUC__ )
|
||||
#define aligned_array(type, name, no, stride) type name[no] __attribute__ ((aligned(stride)))
|
||||
#else
|
||||
#define aligned_array(type, name, no, stride) type name[no]
|
||||
#endif
|
||||
|
||||
/* VIA ACE codeword */
|
||||
|
||||
static unsigned char via_flags = 0;
|
||||
|
||||
#if defined ( _MSC_VER ) && ( _MSC_VER > 800 )
|
||||
|
||||
#define NEH_REKEY __asm pushfd __asm popfd
|
||||
#define NEH_AES __asm _emit 0xf3 __asm _emit 0x0f __asm _emit 0xa7
|
||||
#define NEH_ECB NEH_AES __asm _emit 0xc8
|
||||
#define NEH_CBC NEH_AES __asm _emit 0xd0
|
||||
#define NEH_CFB NEH_AES __asm _emit 0xe0
|
||||
#define NEH_OFB NEH_AES __asm _emit 0xe8
|
||||
#define NEH_RNG __asm _emit 0x0f __asm _emit 0xa7 __asm _emit 0xc0
|
||||
|
||||
INLINE int has_cpuid(void)
|
||||
{ char ret_value;
|
||||
__asm
|
||||
{ pushfd /* save EFLAGS register */
|
||||
mov eax,[esp] /* copy it to eax */
|
||||
mov edx,0x00200000 /* CPUID bit position */
|
||||
xor eax,edx /* toggle the CPUID bit */
|
||||
push eax /* attempt to set EFLAGS to */
|
||||
popfd /* the new value */
|
||||
pushfd /* get the new EFLAGS value */
|
||||
pop eax /* into eax */
|
||||
xor eax,[esp] /* xor with original value */
|
||||
and eax,edx /* has CPUID bit changed? */
|
||||
setne al /* set to 1 if we have been */
|
||||
mov ret_value,al /* able to change it */
|
||||
popfd /* restore original EFLAGS */
|
||||
}
|
||||
return (int)ret_value;
|
||||
}
|
||||
|
||||
INLINE int is_via_cpu(void)
|
||||
{ char ret_value;
|
||||
__asm
|
||||
{ push ebx
|
||||
xor eax,eax /* use CPUID to get vendor */
|
||||
cpuid /* identity string */
|
||||
xor eax,eax /* is it "CentaurHauls" ? */
|
||||
sub ebx,0x746e6543 /* 'Cent' */
|
||||
or eax,ebx
|
||||
sub edx,0x48727561 /* 'aurH' */
|
||||
or eax,edx
|
||||
sub ecx,0x736c7561 /* 'auls' */
|
||||
or eax,ecx
|
||||
sete al /* set to 1 if it is VIA ID */
|
||||
mov dl,NEH_CPU_READ /* mark CPU type as read */
|
||||
or dl,al /* & store result in flags */
|
||||
mov [via_flags],dl /* set VIA detected flag */
|
||||
mov ret_value,al /* able to change it */
|
||||
pop ebx
|
||||
}
|
||||
return (int)ret_value;
|
||||
}
|
||||
|
||||
INLINE int read_via_flags(void)
|
||||
{ char ret_value = 0;
|
||||
__asm
|
||||
{ mov eax,0xC0000000 /* Centaur extended CPUID */
|
||||
cpuid
|
||||
mov edx,0xc0000001 /* >= 0xc0000001 if support */
|
||||
cmp eax,edx /* for VIA extended feature */
|
||||
jnae no_rng /* flags is available */
|
||||
mov eax,edx /* read Centaur extended */
|
||||
cpuid /* feature flags */
|
||||
mov eax,NEH_FLAGS_MASK /* mask out and save */
|
||||
and eax,edx /* the RNG and ACE flags */
|
||||
or [via_flags],al /* present & enabled flags */
|
||||
mov ret_value,al /* able to change it */
|
||||
no_rng:
|
||||
}
|
||||
return (int)ret_value;
|
||||
}
|
||||
|
||||
INLINE unsigned int via_rng_in(void *buf)
|
||||
{ char ret_value = 0x1f;
|
||||
__asm
|
||||
{ push edi
|
||||
mov edi,buf /* input buffer address */
|
||||
xor edx,edx /* try to fetch 8 bytes */
|
||||
NEH_RNG /* do RNG read operation */
|
||||
and ret_value,al /* count of bytes returned */
|
||||
pop edi
|
||||
}
|
||||
return (int)ret_value;
|
||||
}
|
||||
|
||||
INLINE void via_ecb_op5(
|
||||
const void *k, const void *c, const void *s, void *d, int l)
|
||||
{ __asm
|
||||
{ push ebx
|
||||
NEH_REKEY
|
||||
mov ebx, (k)
|
||||
mov edx, (c)
|
||||
mov esi, (s)
|
||||
mov edi, (d)
|
||||
mov ecx, (l)
|
||||
NEH_ECB
|
||||
pop ebx
|
||||
}
|
||||
}
|
||||
|
||||
INLINE void via_cbc_op6(
|
||||
const void *k, const void *c, const void *s, void *d, int l, void *v)
|
||||
{ __asm
|
||||
{ push ebx
|
||||
NEH_REKEY
|
||||
mov ebx, (k)
|
||||
mov edx, (c)
|
||||
mov esi, (s)
|
||||
mov edi, (d)
|
||||
mov ecx, (l)
|
||||
mov eax, (v)
|
||||
NEH_CBC
|
||||
pop ebx
|
||||
}
|
||||
}
|
||||
|
||||
INLINE void via_cbc_op7(
|
||||
const void *k, const void *c, const void *s, void *d, int l, void *v, void *w)
|
||||
{ __asm
|
||||
{ push ebx
|
||||
NEH_REKEY
|
||||
mov ebx, (k)
|
||||
mov edx, (c)
|
||||
mov esi, (s)
|
||||
mov edi, (d)
|
||||
mov ecx, (l)
|
||||
mov eax, (v)
|
||||
NEH_CBC
|
||||
mov esi, eax
|
||||
mov edi, (w)
|
||||
movsd
|
||||
movsd
|
||||
movsd
|
||||
movsd
|
||||
pop ebx
|
||||
}
|
||||
}
|
||||
|
||||
INLINE void via_cfb_op6(
|
||||
const void *k, const void *c, const void *s, void *d, int l, void *v)
|
||||
{ __asm
|
||||
{ push ebx
|
||||
NEH_REKEY
|
||||
mov ebx, (k)
|
||||
mov edx, (c)
|
||||
mov esi, (s)
|
||||
mov edi, (d)
|
||||
mov ecx, (l)
|
||||
mov eax, (v)
|
||||
NEH_CFB
|
||||
pop ebx
|
||||
}
|
||||
}
|
||||
|
||||
INLINE void via_cfb_op7(
|
||||
const void *k, const void *c, const void *s, void *d, int l, void *v, void *w)
|
||||
{ __asm
|
||||
{ push ebx
|
||||
NEH_REKEY
|
||||
mov ebx, (k)
|
||||
mov edx, (c)
|
||||
mov esi, (s)
|
||||
mov edi, (d)
|
||||
mov ecx, (l)
|
||||
mov eax, (v)
|
||||
NEH_CFB
|
||||
mov esi, eax
|
||||
mov edi, (w)
|
||||
movsd
|
||||
movsd
|
||||
movsd
|
||||
movsd
|
||||
pop ebx
|
||||
}
|
||||
}
|
||||
|
||||
INLINE void via_ofb_op6(
|
||||
const void *k, const void *c, const void *s, void *d, int l, void *v)
|
||||
{ __asm
|
||||
{ push ebx
|
||||
NEH_REKEY
|
||||
mov ebx, (k)
|
||||
mov edx, (c)
|
||||
mov esi, (s)
|
||||
mov edi, (d)
|
||||
mov ecx, (l)
|
||||
mov eax, (v)
|
||||
NEH_OFB
|
||||
pop ebx
|
||||
}
|
||||
}
|
||||
|
||||
#elif defined( __GNUC__ )
|
||||
|
||||
#define NEH_REKEY asm("pushfl\n popfl\n\t")
|
||||
#define NEH_ECB asm(".byte 0xf3, 0x0f, 0xa7, 0xc8\n\t")
|
||||
#define NEH_CBC asm(".byte 0xf3, 0x0f, 0xa7, 0xd0\n\t")
|
||||
#define NEH_CFB asm(".byte 0xf3, 0x0f, 0xa7, 0xe0\n\t")
|
||||
#define NEH_OFB asm(".byte 0xf3, 0x0f, 0xa7, 0xe8\n\t")
|
||||
#define NEH_RNG asm(".byte 0x0f, 0xa7, 0xc0\n\t");
|
||||
|
||||
INLINE int has_cpuid(void)
|
||||
{ int val;
|
||||
asm("pushfl\n\t");
|
||||
asm("movl 0(%esp),%eax\n\t");
|
||||
asm("xor $0x00200000,%eax\n\t");
|
||||
asm("pushl %eax\n\t");
|
||||
asm("popfl\n\t");
|
||||
asm("pushfl\n\t");
|
||||
asm("popl %eax\n\t");
|
||||
asm("xorl 0(%esp),%edx\n\t");
|
||||
asm("andl $0x00200000,%eax\n\t");
|
||||
asm("movl %%eax,%0\n\t" : "=m" (val));
|
||||
asm("popfl\n\t");
|
||||
return val ? 1 : 0;
|
||||
}
|
||||
|
||||
INLINE int is_via_cpu(void)
|
||||
{ int val;
|
||||
asm("pushl %eax\n\t");
|
||||
asm("pushl %ebx\n\t");
|
||||
asm("pushl %ecx\n\t");
|
||||
asm("pushl %edx\n\t");
|
||||
asm("xorl %eax,%eax\n\t");
|
||||
asm("cpuid\n\t");
|
||||
asm("xorl %eax,%eax\n\t");
|
||||
asm("subl $0x746e6543,%ebx\n\t");
|
||||
asm("orl %ebx,%eax\n\t");
|
||||
asm("subl $0x48727561,%edx\n\t");
|
||||
asm("orl %edx,%eax\n\t");
|
||||
asm("subl $0x736c7561,%ecx\n\t");
|
||||
asm("orl %ecx,%eax\n\t");
|
||||
asm("movl %%eax,%0\n\t" : "=m" (val));
|
||||
asm("popl %edx\n\t");
|
||||
asm("popl %ecx\n\t");
|
||||
asm("popl %ebx\n\t");
|
||||
asm("popl %eax\n\t");
|
||||
val = (val ? 0 : 1);
|
||||
via_flags = (val | NEH_CPU_READ);
|
||||
return val;
|
||||
}
|
||||
|
||||
INLINE int read_via_flags(void)
|
||||
{ unsigned char val;
|
||||
asm("movl $0xc0000000,%eax\n\t");
|
||||
asm("cpuid\n\t");
|
||||
asm("movl $0xc0000001,%edx\n\t");
|
||||
asm("cmpl %edx,%eax\n\t");
|
||||
asm("setae %al\n\t");
|
||||
asm("movb %%al,%0\n\t" : "=m" (val));
|
||||
if(!val) return 0;
|
||||
asm("movl $0xc0000001,%eax\n\t");
|
||||
asm("cpuid\n\t");
|
||||
asm("movb %%dl,%0\n\t" : "=m" (val));
|
||||
val &= NEH_FLAGS_MASK;
|
||||
via_flags |= val;
|
||||
return (int) val;
|
||||
}
|
||||
|
||||
INLINE int via_rng_in(void *buf)
|
||||
{ int val;
|
||||
asm("pushl %edi\n\t");
|
||||
asm("movl %0,%%edi\n\t" : : "m" (buf));
|
||||
asm("xorl %edx,%edx\n\t");
|
||||
NEH_RNG
|
||||
asm("andl $0x0000001f,%eax\n\t");
|
||||
asm("movl %%eax,%0\n\t" : "=m" (val));
|
||||
asm("popl %edi\n\t");
|
||||
return val;
|
||||
}
|
||||
|
||||
INLINE volatile void via_ecb_op5(
|
||||
const void *k, const void *c, const void *s, void *d, int l)
|
||||
{
|
||||
asm("pushl %ebx\n\t");
|
||||
NEH_REKEY;
|
||||
asm("movl %0, %%ebx\n\t" : : "m" (k));
|
||||
asm("movl %0, %%edx\n\t" : : "m" (c));
|
||||
asm("movl %0, %%esi\n\t" : : "m" (s));
|
||||
asm("movl %0, %%edi\n\t" : : "m" (d));
|
||||
asm("movl %0, %%ecx\n\t" : : "m" (l));
|
||||
NEH_ECB;
|
||||
asm("popl %ebx\n\t");
|
||||
}
|
||||
|
||||
INLINE volatile void via_cbc_op6(
|
||||
const void *k, const void *c, const void *s, void *d, int l, void *v)
|
||||
{
|
||||
asm("pushl %ebx\n\t");
|
||||
NEH_REKEY;
|
||||
asm("movl %0, %%ebx\n\t" : : "m" (k));
|
||||
asm("movl %0, %%edx\n\t" : : "m" (c));
|
||||
asm("movl %0, %%esi\n\t" : : "m" (s));
|
||||
asm("movl %0, %%edi\n\t" : : "m" (d));
|
||||
asm("movl %0, %%ecx\n\t" : : "m" (l));
|
||||
asm("movl %0, %%eax\n\t" : : "m" (v));
|
||||
NEH_CBC;
|
||||
asm("popl %ebx\n\t");
|
||||
}
|
||||
|
||||
INLINE volatile void via_cbc_op7(
|
||||
const void *k, const void *c, const void *s, void *d, int l, void *v, void *w)
|
||||
{
|
||||
asm("pushl %ebx\n\t");
|
||||
NEH_REKEY;
|
||||
asm("movl %0, %%ebx\n\t" : : "m" (k));
|
||||
asm("movl %0, %%edx\n\t" : : "m" (c));
|
||||
asm("movl %0, %%esi\n\t" : : "m" (s));
|
||||
asm("movl %0, %%edi\n\t" : : "m" (d));
|
||||
asm("movl %0, %%ecx\n\t" : : "m" (l));
|
||||
asm("movl %0, %%eax\n\t" : : "m" (v));
|
||||
NEH_CBC;
|
||||
asm("movl %eax,%esi\n\t");
|
||||
asm("movl %0, %%edi\n\t" : : "m" (w));
|
||||
asm("movsl; movsl; movsl; movsl\n\t");
|
||||
asm("popl %ebx\n\t");
|
||||
}
|
||||
|
||||
INLINE volatile void via_cfb_op6(
|
||||
const void *k, const void *c, const void *s, void *d, int l, void *v)
|
||||
{
|
||||
asm("pushl %ebx\n\t");
|
||||
NEH_REKEY;
|
||||
asm("movl %0, %%ebx\n\t" : : "m" (k));
|
||||
asm("movl %0, %%edx\n\t" : : "m" (c));
|
||||
asm("movl %0, %%esi\n\t" : : "m" (s));
|
||||
asm("movl %0, %%edi\n\t" : : "m" (d));
|
||||
asm("movl %0, %%ecx\n\t" : : "m" (l));
|
||||
asm("movl %0, %%eax\n\t" : : "m" (v));
|
||||
NEH_CFB;
|
||||
asm("popl %ebx\n\t");
|
||||
}
|
||||
|
||||
INLINE volatile void via_cfb_op7(
|
||||
const void *k, const void *c, const void *s, void *d, int l, void *v, void *w)
|
||||
{
|
||||
asm("pushl %ebx\n\t");
|
||||
NEH_REKEY;
|
||||
asm("movl %0, %%ebx\n\t" : : "m" (k));
|
||||
asm("movl %0, %%edx\n\t" : : "m" (c));
|
||||
asm("movl %0, %%esi\n\t" : : "m" (s));
|
||||
asm("movl %0, %%edi\n\t" : : "m" (d));
|
||||
asm("movl %0, %%ecx\n\t" : : "m" (l));
|
||||
asm("movl %0, %%eax\n\t" : : "m" (v));
|
||||
NEH_CFB;
|
||||
asm("movl %eax,%esi\n\t");
|
||||
asm("movl %0, %%edi\n\t" : : "m" (w));
|
||||
asm("movsl; movsl; movsl; movsl\n\t");
|
||||
asm("popl %ebx\n\t");
|
||||
}
|
||||
|
||||
INLINE volatile void via_ofb_op6(
|
||||
const void *k, const void *c, const void *s, void *d, int l, void *v)
|
||||
{
|
||||
asm("pushl %ebx\n\t");
|
||||
NEH_REKEY;
|
||||
asm("movl %0, %%ebx\n\t" : : "m" (k));
|
||||
asm("movl %0, %%edx\n\t" : : "m" (c));
|
||||
asm("movl %0, %%esi\n\t" : : "m" (s));
|
||||
asm("movl %0, %%edi\n\t" : : "m" (d));
|
||||
asm("movl %0, %%ecx\n\t" : : "m" (l));
|
||||
asm("movl %0, %%eax\n\t" : : "m" (v));
|
||||
NEH_OFB;
|
||||
asm("popl %ebx\n\t");
|
||||
}
|
||||
|
||||
#else
|
||||
#error VIA ACE is not available with this compiler
|
||||
#endif
|
||||
|
||||
INLINE int via_ace_test(void)
|
||||
{
|
||||
return has_cpuid() && is_via_cpu() && ((read_via_flags() & NEH_ACE_FLAGS) == NEH_ACE_FLAGS);
|
||||
}
|
||||
|
||||
#define VIA_ACE_AVAILABLE (((via_flags & NEH_ACE_FLAGS) == NEH_ACE_FLAGS) \
|
||||
|| (via_flags & NEH_CPU_READ) && (via_flags & NEH_CPU_IS_VIA) || via_ace_test())
|
||||
|
||||
INLINE int via_rng_test(void)
|
||||
{
|
||||
return has_cpuid() && is_via_cpu() && ((read_via_flags() & NEH_RNG_FLAGS) == NEH_RNG_FLAGS);
|
||||
}
|
||||
|
||||
#define VIA_RNG_AVAILABLE (((via_flags & NEH_RNG_FLAGS) == NEH_RNG_FLAGS) \
|
||||
|| (via_flags & NEH_CPU_READ) && (via_flags & NEH_CPU_IS_VIA) || via_rng_test())
|
||||
|
||||
INLINE int read_via_rng(void *buf, int count)
|
||||
{ int nbr, max_reads, lcnt = count;
|
||||
unsigned char *p, *q;
|
||||
aligned_auto(unsigned char, bp, 64, 16);
|
||||
|
||||
if(!VIA_RNG_AVAILABLE)
|
||||
return 0;
|
||||
|
||||
do
|
||||
{
|
||||
max_reads = MAX_READ_ATTEMPTS;
|
||||
do
|
||||
nbr = via_rng_in(bp);
|
||||
while
|
||||
(nbr == 0 && --max_reads);
|
||||
|
||||
lcnt -= nbr;
|
||||
p = (unsigned char*)buf; q = bp;
|
||||
while(nbr--)
|
||||
*p++ = *q++;
|
||||
}
|
||||
while
|
||||
(lcnt && max_reads);
|
||||
|
||||
return count - lcnt;
|
||||
}
|
||||
|
||||
#endif
|
||||
643
crypto/src/main/jni/final_key/aes/aes_x86_v1.asm
Normal file
643
crypto/src/main/jni/final_key/aes/aes_x86_v1.asm
Normal file
@@ -0,0 +1,643 @@
|
||||
|
||||
; ---------------------------------------------------------------------------
|
||||
; Copyright (c) 1998-2013, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
;
|
||||
; The redistribution and use of this software (with or without changes)
|
||||
; is allowed without the payment of fees or royalties provided that:
|
||||
;
|
||||
; source code distributions include the above copyright notice, this
|
||||
; list of conditions and the following disclaimer;
|
||||
;
|
||||
; binary distributions include the above copyright notice, this list
|
||||
; of conditions and the following disclaimer in their documentation.
|
||||
;
|
||||
; This software is provided 'as is' with no explicit or implied warranties
|
||||
; in respect of its operation, including, but not limited to, correctness
|
||||
; and fitness for purpose.
|
||||
; ---------------------------------------------------------------------------
|
||||
; Issue 13/08/2008
|
||||
;
|
||||
; This code requires ASM_X86_V1C to be set in aesopt.h. It requires the C files
|
||||
; aeskey.c and aestab.c for support.
|
||||
|
||||
; An AES implementation for x86 processors using the YASM (or NASM) assembler.
|
||||
; This is an assembler implementation that covers encryption and decryption
|
||||
; only and is intended as a replacement of the C file aescrypt.c. It hence
|
||||
; requires the file aeskey.c for keying and aestab.c for the AES tables. It
|
||||
; employs full tables rather than compressed tables.
|
||||
|
||||
; This code provides the standard AES block size (128 bits, 16 bytes) and the
|
||||
; three standard AES key sizes (128, 192 and 256 bits). It has the same call
|
||||
; interface as my C implementation. The ebx, esi, edi and ebp registers are
|
||||
; preserved across calls but eax, ecx and edx and the artihmetic status flags
|
||||
; are not. It is also important that the defines below match those used in the
|
||||
; C code. This code uses the VC++ register saving conentions; if it is used
|
||||
; with another compiler, conventions for using and saving registers may need to
|
||||
; be checked (and calling conventions). The YASM command line for the VC++
|
||||
; custom build step is:
|
||||
;
|
||||
; yasm -Xvc -f win32 -o "$(TargetDir)\$(InputName).obj" "$(InputPath)"
|
||||
;
|
||||
; The calling intefaces are:
|
||||
;
|
||||
; AES_RETURN aes_encrypt(const unsigned char in_blk[],
|
||||
; unsigned char out_blk[], const aes_encrypt_ctx cx[1]);
|
||||
;
|
||||
; AES_RETURN aes_decrypt(const unsigned char in_blk[],
|
||||
; unsigned char out_blk[], const aes_decrypt_ctx cx[1]);
|
||||
;
|
||||
; AES_RETURN aes_encrypt_key<NNN>(const unsigned char key[],
|
||||
; const aes_encrypt_ctx cx[1]);
|
||||
;
|
||||
; AES_RETURN aes_decrypt_key<NNN>(const unsigned char key[],
|
||||
; const aes_decrypt_ctx cx[1]);
|
||||
;
|
||||
; AES_RETURN aes_encrypt_key(const unsigned char key[],
|
||||
; unsigned int len, const aes_decrypt_ctx cx[1]);
|
||||
;
|
||||
; AES_RETURN aes_decrypt_key(const unsigned char key[],
|
||||
; unsigned int len, const aes_decrypt_ctx cx[1]);
|
||||
;
|
||||
; where <NNN> is 128, 102 or 256. In the last two calls the length can be in
|
||||
; either bits or bytes.
|
||||
|
||||
; Use of this assembler code in Windows kernel mode requires memory paging
|
||||
; to be disabled
|
||||
%ifdef NO_PAGING
|
||||
%define set_page nopage
|
||||
%else
|
||||
%define set_page
|
||||
%endif
|
||||
|
||||
; Comment in/out the following lines to obtain the desired subroutines. These
|
||||
; selections MUST match those in the C header file aes.h
|
||||
|
||||
%define AES_128 ; define if AES with 128 bit keys is needed
|
||||
%define AES_192 ; define if AES with 192 bit keys is needed
|
||||
%define AES_256 ; define if AES with 256 bit keys is needed
|
||||
%define AES_VAR ; define if a variable key size is needed
|
||||
%define ENCRYPTION ; define if encryption is needed
|
||||
%define DECRYPTION ; define if decryption is needed
|
||||
%define AES_REV_DKS ; define if key decryption schedule is reversed
|
||||
%define LAST_ROUND_TABLES ; define if tables are to be used for last round
|
||||
|
||||
; offsets to parameters
|
||||
|
||||
in_blk equ 4 ; input byte array address parameter
|
||||
out_blk equ 8 ; output byte array address parameter
|
||||
ctx equ 12 ; AES context structure
|
||||
stk_spc equ 20 ; stack space
|
||||
%define parms 12 ; parameter space on stack
|
||||
|
||||
; The encryption key schedule has the following in memory layout where N is the
|
||||
; number of rounds (10, 12 or 14):
|
||||
;
|
||||
; lo: | input key (round 0) | ; each round is four 32-bit words
|
||||
; | encryption round 1 |
|
||||
; | encryption round 2 |
|
||||
; ....
|
||||
; | encryption round N-1 |
|
||||
; hi: | encryption round N |
|
||||
;
|
||||
; The decryption key schedule is normally set up so that it has the same
|
||||
; layout as above by actually reversing the order of the encryption key
|
||||
; schedule in memory (this happens when AES_REV_DKS is set):
|
||||
;
|
||||
; lo: | decryption round 0 | = | encryption round N |
|
||||
; | decryption round 1 | = INV_MIX_COL[ | encryption round N-1 | ]
|
||||
; | decryption round 2 | = INV_MIX_COL[ | encryption round N-2 | ]
|
||||
; .... ....
|
||||
; | decryption round N-1 | = INV_MIX_COL[ | encryption round 1 | ]
|
||||
; hi: | decryption round N | = | input key (round 0) |
|
||||
;
|
||||
; with rounds except the first and last modified using inv_mix_column()
|
||||
; But if AES_REV_DKS is NOT set the order of keys is left as it is for
|
||||
; encryption so that it has to be accessed in reverse when used for
|
||||
; decryption (although the inverse mix column modifications are done)
|
||||
;
|
||||
; lo: | decryption round 0 | = | input key (round 0) |
|
||||
; | decryption round 1 | = INV_MIX_COL[ | encryption round 1 | ]
|
||||
; | decryption round 2 | = INV_MIX_COL[ | encryption round 2 | ]
|
||||
; .... ....
|
||||
; | decryption round N-1 | = INV_MIX_COL[ | encryption round N-1 | ]
|
||||
; hi: | decryption round N | = | encryption round N |
|
||||
;
|
||||
; This layout is faster when the assembler key scheduling provided here
|
||||
; is used.
|
||||
;
|
||||
; The DLL interface must use the _stdcall convention in which the number
|
||||
; of bytes of parameter space is added after an @ to the sutine's name.
|
||||
; We must also remove our parameters from the stack before return (see
|
||||
; the do_exit macro). Define DLL_EXPORT for the Dynamic Link Library version.
|
||||
|
||||
;%define DLL_EXPORT
|
||||
|
||||
; End of user defines
|
||||
|
||||
section .text align=32 set_page
|
||||
|
||||
%ifdef AES_VAR
|
||||
%ifndef AES_128
|
||||
%define AES_128
|
||||
%endif
|
||||
%ifndef AES_192
|
||||
%define AES_192
|
||||
%endif
|
||||
%ifndef AES_256
|
||||
%define AES_256
|
||||
%endif
|
||||
%endif
|
||||
|
||||
%ifdef AES_VAR
|
||||
%define KS_LENGTH 60
|
||||
%elifdef AES_256
|
||||
%define KS_LENGTH 60
|
||||
%elifdef AES_192
|
||||
%define KS_LENGTH 52
|
||||
%else
|
||||
%define KS_LENGTH 44
|
||||
%endif
|
||||
|
||||
; These macros implement stack based local variables
|
||||
|
||||
%macro save 2
|
||||
mov [esp+4*%1],%2
|
||||
%endmacro
|
||||
|
||||
%macro restore 2
|
||||
mov %1,[esp+4*%2]
|
||||
%endmacro
|
||||
|
||||
; the DLL has to implement the _stdcall calling interface on return
|
||||
; In this case we have to take our parameters (3 4-byte pointers)
|
||||
; off the stack
|
||||
|
||||
%macro do_name 1-2 parms
|
||||
%ifndef DLL_EXPORT
|
||||
global %1
|
||||
%1:
|
||||
%else
|
||||
global %1@%2
|
||||
export %1@%2
|
||||
%1@%2:
|
||||
%endif
|
||||
%endmacro
|
||||
|
||||
%macro do_call 1-2 parms
|
||||
%ifndef DLL_EXPORT
|
||||
call %1
|
||||
add esp,%2
|
||||
%else
|
||||
call %1@%2
|
||||
%endif
|
||||
%endmacro
|
||||
|
||||
%macro do_exit 0-1 parms
|
||||
%ifdef DLL_EXPORT
|
||||
ret %1
|
||||
%else
|
||||
ret
|
||||
%endif
|
||||
%endmacro
|
||||
|
||||
%ifdef ENCRYPTION
|
||||
|
||||
extern _t_fn
|
||||
|
||||
%define etab_0(x) [_t_fn+4*x]
|
||||
%define etab_1(x) [_t_fn+1024+4*x]
|
||||
%define etab_2(x) [_t_fn+2048+4*x]
|
||||
%define etab_3(x) [_t_fn+3072+4*x]
|
||||
|
||||
%ifdef LAST_ROUND_TABLES
|
||||
|
||||
extern _t_fl
|
||||
|
||||
%define eltab_0(x) [_t_fl+4*x]
|
||||
%define eltab_1(x) [_t_fl+1024+4*x]
|
||||
%define eltab_2(x) [_t_fl+2048+4*x]
|
||||
%define eltab_3(x) [_t_fl+3072+4*x]
|
||||
|
||||
%else
|
||||
|
||||
%define etab_b(x) byte [_t_fn+3072+4*x]
|
||||
|
||||
%endif
|
||||
|
||||
; ROUND FUNCTION. Build column[2] on ESI and column[3] on EDI that have the
|
||||
; round keys pre-loaded. Build column[0] in EBP and column[1] in EBX.
|
||||
;
|
||||
; Input:
|
||||
;
|
||||
; EAX column[0]
|
||||
; EBX column[1]
|
||||
; ECX column[2]
|
||||
; EDX column[3]
|
||||
; ESI column key[round][2]
|
||||
; EDI column key[round][3]
|
||||
; EBP scratch
|
||||
;
|
||||
; Output:
|
||||
;
|
||||
; EBP column[0] unkeyed
|
||||
; EBX column[1] unkeyed
|
||||
; ESI column[2] keyed
|
||||
; EDI column[3] keyed
|
||||
; EAX scratch
|
||||
; ECX scratch
|
||||
; EDX scratch
|
||||
|
||||
%macro rnd_fun 2
|
||||
|
||||
rol ebx,16
|
||||
%1 esi, cl, 0, ebp
|
||||
%1 esi, dh, 1, ebp
|
||||
%1 esi, bh, 3, ebp
|
||||
%1 edi, dl, 0, ebp
|
||||
%1 edi, ah, 1, ebp
|
||||
%1 edi, bl, 2, ebp
|
||||
%2 ebp, al, 0, ebp
|
||||
shr ebx,16
|
||||
and eax,0xffff0000
|
||||
or eax,ebx
|
||||
shr edx,16
|
||||
%1 ebp, ah, 1, ebx
|
||||
%1 ebp, dh, 3, ebx
|
||||
%2 ebx, dl, 2, ebx
|
||||
%1 ebx, ch, 1, edx
|
||||
%1 ebx, al, 0, edx
|
||||
shr eax,16
|
||||
shr ecx,16
|
||||
%1 ebp, cl, 2, edx
|
||||
%1 edi, ch, 3, edx
|
||||
%1 esi, al, 2, edx
|
||||
%1 ebx, ah, 3, edx
|
||||
|
||||
%endmacro
|
||||
|
||||
; Basic MOV and XOR Operations for normal rounds
|
||||
|
||||
%macro nr_xor 4
|
||||
movzx %4,%2
|
||||
xor %1,etab_%3(%4)
|
||||
%endmacro
|
||||
|
||||
%macro nr_mov 4
|
||||
movzx %4,%2
|
||||
mov %1,etab_%3(%4)
|
||||
%endmacro
|
||||
|
||||
; Basic MOV and XOR Operations for last round
|
||||
|
||||
%ifdef LAST_ROUND_TABLES
|
||||
|
||||
%macro lr_xor 4
|
||||
movzx %4,%2
|
||||
xor %1,eltab_%3(%4)
|
||||
%endmacro
|
||||
|
||||
%macro lr_mov 4
|
||||
movzx %4,%2
|
||||
mov %1,eltab_%3(%4)
|
||||
%endmacro
|
||||
|
||||
%else
|
||||
|
||||
%macro lr_xor 4
|
||||
movzx %4,%2
|
||||
movzx %4,etab_b(%4)
|
||||
%if %3 != 0
|
||||
shl %4,8*%3
|
||||
%endif
|
||||
xor %1,%4
|
||||
%endmacro
|
||||
|
||||
%macro lr_mov 4
|
||||
movzx %4,%2
|
||||
movzx %1,etab_b(%4)
|
||||
%if %3 != 0
|
||||
shl %1,8*%3
|
||||
%endif
|
||||
%endmacro
|
||||
|
||||
%endif
|
||||
|
||||
%macro enc_round 0
|
||||
|
||||
add ebp,16
|
||||
save 0,ebp
|
||||
mov esi,[ebp+8]
|
||||
mov edi,[ebp+12]
|
||||
|
||||
rnd_fun nr_xor, nr_mov
|
||||
|
||||
mov eax,ebp
|
||||
mov ecx,esi
|
||||
mov edx,edi
|
||||
restore ebp,0
|
||||
xor eax,[ebp]
|
||||
xor ebx,[ebp+4]
|
||||
|
||||
%endmacro
|
||||
|
||||
%macro enc_last_round 0
|
||||
|
||||
add ebp,16
|
||||
save 0,ebp
|
||||
mov esi,[ebp+8]
|
||||
mov edi,[ebp+12]
|
||||
|
||||
rnd_fun lr_xor, lr_mov
|
||||
|
||||
mov eax,ebp
|
||||
restore ebp,0
|
||||
xor eax,[ebp]
|
||||
xor ebx,[ebp+4]
|
||||
|
||||
%endmacro
|
||||
|
||||
; AES Encryption Subroutine
|
||||
|
||||
align 32
|
||||
do_name _aes_encrypt
|
||||
|
||||
sub esp,stk_spc
|
||||
mov [esp+16],ebp
|
||||
mov [esp+12],ebx
|
||||
mov [esp+ 8],esi
|
||||
mov [esp+ 4],edi
|
||||
|
||||
mov esi,[esp+in_blk+stk_spc] ; input pointer
|
||||
mov eax,[esi ]
|
||||
mov ebx,[esi+ 4]
|
||||
mov ecx,[esi+ 8]
|
||||
mov edx,[esi+12]
|
||||
|
||||
mov ebp,[esp+ctx+stk_spc] ; key pointer
|
||||
movzx edi,byte [ebp+4*KS_LENGTH]
|
||||
xor eax,[ebp ]
|
||||
xor ebx,[ebp+ 4]
|
||||
xor ecx,[ebp+ 8]
|
||||
xor edx,[ebp+12]
|
||||
|
||||
; determine the number of rounds
|
||||
|
||||
cmp edi,10*16
|
||||
je .3
|
||||
cmp edi,12*16
|
||||
je .2
|
||||
cmp edi,14*16
|
||||
je .1
|
||||
mov eax,-1
|
||||
jmp .5
|
||||
|
||||
.1: enc_round
|
||||
enc_round
|
||||
.2: enc_round
|
||||
enc_round
|
||||
.3: enc_round
|
||||
enc_round
|
||||
enc_round
|
||||
enc_round
|
||||
enc_round
|
||||
enc_round
|
||||
enc_round
|
||||
enc_round
|
||||
enc_round
|
||||
enc_last_round
|
||||
|
||||
mov edx,[esp+out_blk+stk_spc]
|
||||
mov [edx],eax
|
||||
mov [edx+4],ebx
|
||||
mov [edx+8],esi
|
||||
mov [edx+12],edi
|
||||
xor eax,eax
|
||||
|
||||
.5: mov ebp,[esp+16]
|
||||
mov ebx,[esp+12]
|
||||
mov esi,[esp+ 8]
|
||||
mov edi,[esp+ 4]
|
||||
add esp,stk_spc
|
||||
do_exit
|
||||
|
||||
%endif
|
||||
|
||||
%ifdef DECRYPTION
|
||||
|
||||
extern _t_in
|
||||
|
||||
%define dtab_0(x) [_t_in+4*x]
|
||||
%define dtab_1(x) [_t_in+1024+4*x]
|
||||
%define dtab_2(x) [_t_in+2048+4*x]
|
||||
%define dtab_3(x) [_t_in+3072+4*x]
|
||||
|
||||
%ifdef LAST_ROUND_TABLES
|
||||
|
||||
extern _t_il
|
||||
|
||||
%define dltab_0(x) [_t_il+4*x]
|
||||
%define dltab_1(x) [_t_il+1024+4*x]
|
||||
%define dltab_2(x) [_t_il+2048+4*x]
|
||||
%define dltab_3(x) [_t_il+3072+4*x]
|
||||
|
||||
%else
|
||||
|
||||
extern _t_ibox
|
||||
|
||||
%define dtab_x(x) byte [_t_ibox+x]
|
||||
|
||||
%endif
|
||||
|
||||
%macro irn_fun 2
|
||||
|
||||
rol eax,16
|
||||
%1 esi, cl, 0, ebp
|
||||
%1 esi, bh, 1, ebp
|
||||
%1 esi, al, 2, ebp
|
||||
%1 edi, dl, 0, ebp
|
||||
%1 edi, ch, 1, ebp
|
||||
%1 edi, ah, 3, ebp
|
||||
%2 ebp, bl, 0, ebp
|
||||
shr eax,16
|
||||
and ebx,0xffff0000
|
||||
or ebx,eax
|
||||
shr ecx,16
|
||||
%1 ebp, bh, 1, eax
|
||||
%1 ebp, ch, 3, eax
|
||||
%2 eax, cl, 2, ecx
|
||||
%1 eax, bl, 0, ecx
|
||||
%1 eax, dh, 1, ecx
|
||||
shr ebx,16
|
||||
shr edx,16
|
||||
%1 esi, dh, 3, ecx
|
||||
%1 ebp, dl, 2, ecx
|
||||
%1 eax, bh, 3, ecx
|
||||
%1 edi, bl, 2, ecx
|
||||
|
||||
%endmacro
|
||||
|
||||
; Basic MOV and XOR Operations for normal rounds
|
||||
|
||||
%macro ni_xor 4
|
||||
movzx %4,%2
|
||||
xor %1,dtab_%3(%4)
|
||||
%endmacro
|
||||
|
||||
%macro ni_mov 4
|
||||
movzx %4,%2
|
||||
mov %1,dtab_%3(%4)
|
||||
%endmacro
|
||||
|
||||
; Basic MOV and XOR Operations for last round
|
||||
|
||||
%ifdef LAST_ROUND_TABLES
|
||||
|
||||
%macro li_xor 4
|
||||
movzx %4,%2
|
||||
xor %1,dltab_%3(%4)
|
||||
%endmacro
|
||||
|
||||
%macro li_mov 4
|
||||
movzx %4,%2
|
||||
mov %1,dltab_%3(%4)
|
||||
%endmacro
|
||||
|
||||
%else
|
||||
|
||||
%macro li_xor 4
|
||||
movzx %4,%2
|
||||
movzx %4,dtab_x(%4)
|
||||
%if %3 != 0
|
||||
shl %4,8*%3
|
||||
%endif
|
||||
xor %1,%4
|
||||
%endmacro
|
||||
|
||||
%macro li_mov 4
|
||||
movzx %4,%2
|
||||
movzx %1,dtab_x(%4)
|
||||
%if %3 != 0
|
||||
shl %1,8*%3
|
||||
%endif
|
||||
%endmacro
|
||||
|
||||
%endif
|
||||
|
||||
%macro dec_round 0
|
||||
|
||||
%ifdef AES_REV_DKS
|
||||
add ebp,16
|
||||
%else
|
||||
sub ebp,16
|
||||
%endif
|
||||
save 0,ebp
|
||||
mov esi,[ebp+8]
|
||||
mov edi,[ebp+12]
|
||||
|
||||
irn_fun ni_xor, ni_mov
|
||||
|
||||
mov ebx,ebp
|
||||
mov ecx,esi
|
||||
mov edx,edi
|
||||
restore ebp,0
|
||||
xor eax,[ebp]
|
||||
xor ebx,[ebp+4]
|
||||
|
||||
%endmacro
|
||||
|
||||
%macro dec_last_round 0
|
||||
|
||||
%ifdef AES_REV_DKS
|
||||
add ebp,16
|
||||
%else
|
||||
sub ebp,16
|
||||
%endif
|
||||
save 0,ebp
|
||||
mov esi,[ebp+8]
|
||||
mov edi,[ebp+12]
|
||||
|
||||
irn_fun li_xor, li_mov
|
||||
|
||||
mov ebx,ebp
|
||||
restore ebp,0
|
||||
xor eax,[ebp]
|
||||
xor ebx,[ebp+4]
|
||||
|
||||
%endmacro
|
||||
|
||||
; AES Decryption Subroutine
|
||||
|
||||
align 32
|
||||
do_name _aes_decrypt
|
||||
|
||||
sub esp,stk_spc
|
||||
mov [esp+16],ebp
|
||||
mov [esp+12],ebx
|
||||
mov [esp+ 8],esi
|
||||
mov [esp+ 4],edi
|
||||
|
||||
; input four columns and xor in first round key
|
||||
|
||||
mov esi,[esp+in_blk+stk_spc] ; input pointer
|
||||
mov eax,[esi ]
|
||||
mov ebx,[esi+ 4]
|
||||
mov ecx,[esi+ 8]
|
||||
mov edx,[esi+12]
|
||||
lea esi,[esi+16]
|
||||
|
||||
mov ebp,[esp+ctx+stk_spc] ; key pointer
|
||||
movzx edi,byte[ebp+4*KS_LENGTH]
|
||||
%ifndef AES_REV_DKS ; if decryption key schedule is not reversed
|
||||
lea ebp,[ebp+edi] ; we have to access it from the top down
|
||||
%endif
|
||||
xor eax,[ebp ] ; key schedule
|
||||
xor ebx,[ebp+ 4]
|
||||
xor ecx,[ebp+ 8]
|
||||
xor edx,[ebp+12]
|
||||
|
||||
; determine the number of rounds
|
||||
|
||||
cmp edi,10*16
|
||||
je .3
|
||||
cmp edi,12*16
|
||||
je .2
|
||||
cmp edi,14*16
|
||||
je .1
|
||||
mov eax,-1
|
||||
jmp .5
|
||||
|
||||
.1: dec_round
|
||||
dec_round
|
||||
.2: dec_round
|
||||
dec_round
|
||||
.3: dec_round
|
||||
dec_round
|
||||
dec_round
|
||||
dec_round
|
||||
dec_round
|
||||
dec_round
|
||||
dec_round
|
||||
dec_round
|
||||
dec_round
|
||||
dec_last_round
|
||||
|
||||
; move final values to the output array.
|
||||
|
||||
mov ebp,[esp+out_blk+stk_spc]
|
||||
mov [ebp],eax
|
||||
mov [ebp+4],ebx
|
||||
mov [ebp+8],esi
|
||||
mov [ebp+12],edi
|
||||
xor eax,eax
|
||||
|
||||
.5: mov ebp,[esp+16]
|
||||
mov ebx,[esp+12]
|
||||
mov esi,[esp+ 8]
|
||||
mov edi,[esp+ 4]
|
||||
add esp,stk_spc
|
||||
do_exit
|
||||
|
||||
%endif
|
||||
|
||||
end
|
||||
|
||||
1396
crypto/src/main/jni/final_key/aes/aes_x86_v2.asm
Normal file
1396
crypto/src/main/jni/final_key/aes/aes_x86_v2.asm
Normal file
File diff suppressed because it is too large
Load Diff
141
crypto/src/main/jni/final_key/aes/aescpp.h
Normal file
141
crypto/src/main/jni/final_key/aes/aescpp.h
Normal file
@@ -0,0 +1,141 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2013, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation.
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its operation, including, but not limited to, correctness
|
||||
and fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
|
||||
This file contains the definitions required to use AES (Rijndael) in C++.
|
||||
*/
|
||||
|
||||
#ifndef _AESCPP_H
|
||||
#define _AESCPP_H
|
||||
|
||||
#include "aes.h"
|
||||
|
||||
#if defined( AES_ENCRYPT )
|
||||
|
||||
class AESencrypt
|
||||
{
|
||||
public:
|
||||
aes_encrypt_ctx cx[1];
|
||||
AESencrypt(void) { aes_init(); };
|
||||
#if defined(AES_128)
|
||||
AESencrypt(const unsigned char key[])
|
||||
{ aes_encrypt_key128(key, cx); }
|
||||
AES_RETURN key128(const unsigned char key[])
|
||||
{ return aes_encrypt_key128(key, cx); }
|
||||
#endif
|
||||
#if defined(AES_192)
|
||||
AES_RETURN key192(const unsigned char key[])
|
||||
{ return aes_encrypt_key192(key, cx); }
|
||||
#endif
|
||||
#if defined(AES_256)
|
||||
AES_RETURN key256(const unsigned char key[])
|
||||
{ return aes_encrypt_key256(key, cx); }
|
||||
#endif
|
||||
#if defined(AES_VAR)
|
||||
AES_RETURN key(const unsigned char key[], int key_len)
|
||||
{ return aes_encrypt_key(key, key_len, cx); }
|
||||
#endif
|
||||
AES_RETURN encrypt(const unsigned char in[], unsigned char out[]) const
|
||||
{ return aes_encrypt(in, out, cx); }
|
||||
#ifndef AES_MODES
|
||||
AES_RETURN ecb_encrypt(const unsigned char in[], unsigned char out[], int nb) const
|
||||
{ while(nb--)
|
||||
{ aes_encrypt(in, out, cx), in += AES_BLOCK_SIZE, out += AES_BLOCK_SIZE; }
|
||||
}
|
||||
#endif
|
||||
#ifdef AES_MODES
|
||||
AES_RETURN mode_reset(void) { return aes_mode_reset(cx); }
|
||||
|
||||
AES_RETURN ecb_encrypt(const unsigned char in[], unsigned char out[], int nb) const
|
||||
{ return aes_ecb_encrypt(in, out, nb, cx); }
|
||||
|
||||
AES_RETURN cbc_encrypt(const unsigned char in[], unsigned char out[], int nb,
|
||||
unsigned char iv[]) const
|
||||
{ return aes_cbc_encrypt(in, out, nb, iv, cx); }
|
||||
|
||||
AES_RETURN cfb_encrypt(const unsigned char in[], unsigned char out[], int nb,
|
||||
unsigned char iv[])
|
||||
{ return aes_cfb_encrypt(in, out, nb, iv, cx); }
|
||||
|
||||
AES_RETURN cfb_decrypt(const unsigned char in[], unsigned char out[], int nb,
|
||||
unsigned char iv[])
|
||||
{ return aes_cfb_decrypt(in, out, nb, iv, cx); }
|
||||
|
||||
AES_RETURN ofb_crypt(const unsigned char in[], unsigned char out[], int nb,
|
||||
unsigned char iv[])
|
||||
{ return aes_ofb_crypt(in, out, nb, iv, cx); }
|
||||
|
||||
typedef void ctr_fn(unsigned char ctr[]);
|
||||
|
||||
AES_RETURN ctr_crypt(const unsigned char in[], unsigned char out[], int nb,
|
||||
unsigned char iv[], ctr_fn cf)
|
||||
{ return aes_ctr_crypt(in, out, nb, iv, cf, cx); }
|
||||
|
||||
#endif
|
||||
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
#if defined( AES_DECRYPT )
|
||||
|
||||
class AESdecrypt
|
||||
{
|
||||
public:
|
||||
aes_decrypt_ctx cx[1];
|
||||
AESdecrypt(void) { aes_init(); };
|
||||
#if defined(AES_128)
|
||||
AESdecrypt(const unsigned char key[])
|
||||
{ aes_decrypt_key128(key, cx); }
|
||||
AES_RETURN key128(const unsigned char key[])
|
||||
{ return aes_decrypt_key128(key, cx); }
|
||||
#endif
|
||||
#if defined(AES_192)
|
||||
AES_RETURN key192(const unsigned char key[])
|
||||
{ return aes_decrypt_key192(key, cx); }
|
||||
#endif
|
||||
#if defined(AES_256)
|
||||
AES_RETURN key256(const unsigned char key[])
|
||||
{ return aes_decrypt_key256(key, cx); }
|
||||
#endif
|
||||
#if defined(AES_VAR)
|
||||
AES_RETURN key(const unsigned char key[], int key_len)
|
||||
{ return aes_decrypt_key(key, key_len, cx); }
|
||||
#endif
|
||||
AES_RETURN decrypt(const unsigned char in[], unsigned char out[]) const
|
||||
{ return aes_decrypt(in, out, cx); }
|
||||
#ifndef AES_MODES
|
||||
AES_RETURN ecb_decrypt(const unsigned char in[], unsigned char out[], int nb) const
|
||||
{ while(nb--)
|
||||
{ aes_decrypt(in, out, cx), in += AES_BLOCK_SIZE, out += AES_BLOCK_SIZE; }
|
||||
}
|
||||
#endif
|
||||
#ifdef AES_MODES
|
||||
|
||||
AES_RETURN ecb_decrypt(const unsigned char in[], unsigned char out[], int nb) const
|
||||
{ return aes_ecb_decrypt(in, out, nb, cx); }
|
||||
|
||||
AES_RETURN cbc_decrypt(const unsigned char in[], unsigned char out[], int nb,
|
||||
unsigned char iv[]) const
|
||||
{ return aes_cbc_decrypt(in, out, nb, iv, cx); }
|
||||
#endif
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
301
crypto/src/main/jni/final_key/aes/aescrypt.c
Normal file
301
crypto/src/main/jni/final_key/aes/aescrypt.c
Normal file
@@ -0,0 +1,301 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2013, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation.
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its operation, including, but not limited to, correctness
|
||||
and fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
*/
|
||||
|
||||
#include "aesopt.h"
|
||||
#include "aestab.h"
|
||||
|
||||
#if defined( USE_INTEL_AES_IF_PRESENT )
|
||||
# include "aes_ni.h"
|
||||
#else
|
||||
/* map names here to provide the external API ('name' -> 'aes_name') */
|
||||
# define aes_xi(x) aes_ ## x
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#define si(y,x,k,c) (s(y,c) = word_in(x, c) ^ (k)[c])
|
||||
#define so(y,x,c) word_out(y, c, s(x,c))
|
||||
|
||||
#if defined(ARRAYS)
|
||||
#define locals(y,x) x[4],y[4]
|
||||
#else
|
||||
#define locals(y,x) x##0,x##1,x##2,x##3,y##0,y##1,y##2,y##3
|
||||
#endif
|
||||
|
||||
#define l_copy(y, x) s(y,0) = s(x,0); s(y,1) = s(x,1); \
|
||||
s(y,2) = s(x,2); s(y,3) = s(x,3);
|
||||
#define state_in(y,x,k) si(y,x,k,0); si(y,x,k,1); si(y,x,k,2); si(y,x,k,3)
|
||||
#define state_out(y,x) so(y,x,0); so(y,x,1); so(y,x,2); so(y,x,3)
|
||||
#define round(rm,y,x,k) rm(y,x,k,0); rm(y,x,k,1); rm(y,x,k,2); rm(y,x,k,3)
|
||||
|
||||
#if ( FUNCS_IN_C & ENCRYPTION_IN_C )
|
||||
|
||||
/* Visual C++ .Net v7.1 provides the fastest encryption code when using
|
||||
Pentium optimisation with small code but this is poor for decryption
|
||||
so we need to control this with the following VC++ pragmas
|
||||
*/
|
||||
|
||||
#if defined( _MSC_VER ) && !defined( _WIN64 ) && !defined( __clang__ )
|
||||
#pragma optimize( "s", on )
|
||||
#endif
|
||||
|
||||
/* Given the column (c) of the output state variable, the following
|
||||
macros give the input state variables which are needed in its
|
||||
computation for each row (r) of the state. All the alternative
|
||||
macros give the same end values but expand into different ways
|
||||
of calculating these values. In particular the complex macro
|
||||
used for dynamically variable block sizes is designed to expand
|
||||
to a compile time constant whenever possible but will expand to
|
||||
conditional clauses on some branches (I am grateful to Frank
|
||||
Yellin for this construction)
|
||||
*/
|
||||
|
||||
#define fwd_var(x,r,c)\
|
||||
( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\
|
||||
: r == 1 ? ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0))\
|
||||
: r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\
|
||||
: ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2)))
|
||||
|
||||
#if defined(FT4_SET)
|
||||
#undef dec_fmvars
|
||||
#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,n),fwd_var,rf1,c))
|
||||
#elif defined(FT1_SET)
|
||||
#undef dec_fmvars
|
||||
#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(f,n),fwd_var,rf1,c))
|
||||
#else
|
||||
#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ fwd_mcol(no_table(x,t_use(s,box),fwd_var,rf1,c)))
|
||||
#endif
|
||||
|
||||
#if defined(FL4_SET)
|
||||
#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,l),fwd_var,rf1,c))
|
||||
#elif defined(FL1_SET)
|
||||
#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(f,l),fwd_var,rf1,c))
|
||||
#else
|
||||
#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ no_table(x,t_use(s,box),fwd_var,rf1,c))
|
||||
#endif
|
||||
|
||||
AES_RETURN aes_xi(encrypt)(const unsigned char *in, unsigned char *out, const aes_encrypt_ctx cx[1])
|
||||
{ uint32_t locals(b0, b1);
|
||||
const uint32_t *kp;
|
||||
#if defined( dec_fmvars )
|
||||
dec_fmvars; /* declare variables for fwd_mcol() if needed */
|
||||
#endif
|
||||
|
||||
if(cx->inf.b[0] != 10 * AES_BLOCK_SIZE && cx->inf.b[0] != 12 * AES_BLOCK_SIZE && cx->inf.b[0] != 14 * AES_BLOCK_SIZE)
|
||||
return EXIT_FAILURE;
|
||||
|
||||
kp = cx->ks;
|
||||
state_in(b0, in, kp);
|
||||
|
||||
#if (ENC_UNROLL == FULL)
|
||||
|
||||
switch(cx->inf.b[0])
|
||||
{
|
||||
case 14 * AES_BLOCK_SIZE:
|
||||
round(fwd_rnd, b1, b0, kp + 1 * N_COLS);
|
||||
round(fwd_rnd, b0, b1, kp + 2 * N_COLS);
|
||||
kp += 2 * N_COLS;
|
||||
case 12 * AES_BLOCK_SIZE:
|
||||
round(fwd_rnd, b1, b0, kp + 1 * N_COLS);
|
||||
round(fwd_rnd, b0, b1, kp + 2 * N_COLS);
|
||||
kp += 2 * N_COLS;
|
||||
case 10 * AES_BLOCK_SIZE:
|
||||
round(fwd_rnd, b1, b0, kp + 1 * N_COLS);
|
||||
round(fwd_rnd, b0, b1, kp + 2 * N_COLS);
|
||||
round(fwd_rnd, b1, b0, kp + 3 * N_COLS);
|
||||
round(fwd_rnd, b0, b1, kp + 4 * N_COLS);
|
||||
round(fwd_rnd, b1, b0, kp + 5 * N_COLS);
|
||||
round(fwd_rnd, b0, b1, kp + 6 * N_COLS);
|
||||
round(fwd_rnd, b1, b0, kp + 7 * N_COLS);
|
||||
round(fwd_rnd, b0, b1, kp + 8 * N_COLS);
|
||||
round(fwd_rnd, b1, b0, kp + 9 * N_COLS);
|
||||
round(fwd_lrnd, b0, b1, kp +10 * N_COLS);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#if (ENC_UNROLL == PARTIAL)
|
||||
{ uint32_t rnd;
|
||||
for(rnd = 0; rnd < (cx->inf.b[0] >> 5) - 1ul; ++rnd)
|
||||
{
|
||||
kp += N_COLS;
|
||||
round(fwd_rnd, b1, b0, kp);
|
||||
kp += N_COLS;
|
||||
round(fwd_rnd, b0, b1, kp);
|
||||
}
|
||||
kp += N_COLS;
|
||||
round(fwd_rnd, b1, b0, kp);
|
||||
#else
|
||||
{ uint32_t rnd;
|
||||
for(rnd = 0; rnd < (cx->inf.b[0] >> 4) - 1ul; ++rnd)
|
||||
{
|
||||
kp += N_COLS;
|
||||
round(fwd_rnd, b1, b0, kp);
|
||||
l_copy(b0, b1);
|
||||
}
|
||||
#endif
|
||||
kp += N_COLS;
|
||||
round(fwd_lrnd, b0, b1, kp);
|
||||
}
|
||||
#endif
|
||||
|
||||
state_out(out, b0);
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if ( FUNCS_IN_C & DECRYPTION_IN_C)
|
||||
|
||||
/* Visual C++ .Net v7.1 provides the fastest encryption code when using
|
||||
Pentium optimisation with small code but this is poor for decryption
|
||||
so we need to control this with the following VC++ pragmas
|
||||
*/
|
||||
|
||||
#if defined( _MSC_VER ) && !defined( _WIN64 ) && !defined( __clang__ )
|
||||
#pragma optimize( "t", on )
|
||||
#endif
|
||||
|
||||
/* Given the column (c) of the output state variable, the following
|
||||
macros give the input state variables which are needed in its
|
||||
computation for each row (r) of the state. All the alternative
|
||||
macros give the same end values but expand into different ways
|
||||
of calculating these values. In particular the complex macro
|
||||
used for dynamically variable block sizes is designed to expand
|
||||
to a compile time constant whenever possible but will expand to
|
||||
conditional clauses on some branches (I am grateful to Frank
|
||||
Yellin for this construction)
|
||||
*/
|
||||
|
||||
#define inv_var(x,r,c)\
|
||||
( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\
|
||||
: r == 1 ? ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2))\
|
||||
: r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\
|
||||
: ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0)))
|
||||
|
||||
#if defined(IT4_SET)
|
||||
#undef dec_imvars
|
||||
#define inv_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,n),inv_var,rf1,c))
|
||||
#elif defined(IT1_SET)
|
||||
#undef dec_imvars
|
||||
#define inv_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(i,n),inv_var,rf1,c))
|
||||
#else
|
||||
#define inv_rnd(y,x,k,c) (s(y,c) = inv_mcol((k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c)))
|
||||
#endif
|
||||
|
||||
#if defined(IL4_SET)
|
||||
#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,l),inv_var,rf1,c))
|
||||
#elif defined(IL1_SET)
|
||||
#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(i,l),inv_var,rf1,c))
|
||||
#else
|
||||
#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c))
|
||||
#endif
|
||||
|
||||
/* This code can work with the decryption key schedule in the */
|
||||
/* order that is used for encryption (where the 1st decryption */
|
||||
/* round key is at the high end ot the schedule) or with a key */
|
||||
/* schedule that has been reversed to put the 1st decryption */
|
||||
/* round key at the low end of the schedule in memory (when */
|
||||
/* AES_REV_DKS is defined) */
|
||||
|
||||
#ifdef AES_REV_DKS
|
||||
#define key_ofs 0
|
||||
#define rnd_key(n) (kp + n * N_COLS)
|
||||
#else
|
||||
#define key_ofs 1
|
||||
#define rnd_key(n) (kp - n * N_COLS)
|
||||
#endif
|
||||
|
||||
AES_RETURN aes_xi(decrypt)(const unsigned char *in, unsigned char *out, const aes_decrypt_ctx cx[1])
|
||||
{ uint32_t locals(b0, b1);
|
||||
#if defined( dec_imvars )
|
||||
dec_imvars; /* declare variables for inv_mcol() if needed */
|
||||
#endif
|
||||
const uint32_t *kp;
|
||||
|
||||
if(cx->inf.b[0] != 10 * AES_BLOCK_SIZE && cx->inf.b[0] != 12 * AES_BLOCK_SIZE && cx->inf.b[0] != 14 * AES_BLOCK_SIZE)
|
||||
return EXIT_FAILURE;
|
||||
|
||||
kp = cx->ks + (key_ofs ? (cx->inf.b[0] >> 2) : 0);
|
||||
state_in(b0, in, kp);
|
||||
|
||||
#if (DEC_UNROLL == FULL)
|
||||
|
||||
kp = cx->ks + (key_ofs ? 0 : (cx->inf.b[0] >> 2));
|
||||
switch(cx->inf.b[0])
|
||||
{
|
||||
case 14 * AES_BLOCK_SIZE:
|
||||
round(inv_rnd, b1, b0, rnd_key(-13));
|
||||
round(inv_rnd, b0, b1, rnd_key(-12));
|
||||
case 12 * AES_BLOCK_SIZE:
|
||||
round(inv_rnd, b1, b0, rnd_key(-11));
|
||||
round(inv_rnd, b0, b1, rnd_key(-10));
|
||||
case 10 * AES_BLOCK_SIZE:
|
||||
round(inv_rnd, b1, b0, rnd_key(-9));
|
||||
round(inv_rnd, b0, b1, rnd_key(-8));
|
||||
round(inv_rnd, b1, b0, rnd_key(-7));
|
||||
round(inv_rnd, b0, b1, rnd_key(-6));
|
||||
round(inv_rnd, b1, b0, rnd_key(-5));
|
||||
round(inv_rnd, b0, b1, rnd_key(-4));
|
||||
round(inv_rnd, b1, b0, rnd_key(-3));
|
||||
round(inv_rnd, b0, b1, rnd_key(-2));
|
||||
round(inv_rnd, b1, b0, rnd_key(-1));
|
||||
round(inv_lrnd, b0, b1, rnd_key( 0));
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#if (DEC_UNROLL == PARTIAL)
|
||||
{ uint32_t rnd;
|
||||
for(rnd = 0; rnd < (cx->inf.b[0] >> 5) - 1ul; ++rnd)
|
||||
{
|
||||
kp = rnd_key(1);
|
||||
round(inv_rnd, b1, b0, kp);
|
||||
kp = rnd_key(1);
|
||||
round(inv_rnd, b0, b1, kp);
|
||||
}
|
||||
kp = rnd_key(1);
|
||||
round(inv_rnd, b1, b0, kp);
|
||||
#else
|
||||
{ uint32_t rnd;
|
||||
for(rnd = 0; rnd < (cx->inf.b[0] >> 4) - 1ul; ++rnd)
|
||||
{
|
||||
kp = rnd_key(1);
|
||||
round(inv_rnd, b1, b0, kp);
|
||||
l_copy(b0, b1);
|
||||
}
|
||||
#endif
|
||||
kp = rnd_key(1);
|
||||
round(inv_lrnd, b0, b1, kp);
|
||||
}
|
||||
#endif
|
||||
|
||||
state_out(out, b0);
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
573
crypto/src/main/jni/final_key/aes/aeskey.c
Normal file
573
crypto/src/main/jni/final_key/aes/aeskey.c
Normal file
@@ -0,0 +1,573 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2013, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation.
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its operation, including, but not limited to, correctness
|
||||
and fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
*/
|
||||
|
||||
#include "aesopt.h"
|
||||
#include "aestab.h"
|
||||
|
||||
#if defined( USE_INTEL_AES_IF_PRESENT )
|
||||
# include "aes_ni.h"
|
||||
#else
|
||||
/* map names here to provide the external API ('name' -> 'aes_name') */
|
||||
# define aes_xi(x) aes_ ## x
|
||||
#endif
|
||||
|
||||
#ifdef USE_VIA_ACE_IF_PRESENT
|
||||
# include "aes_via_ace.h"
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
/* Use the low bit in the context's inf.b[2] as a flag to
|
||||
indicate whether a context was initialized for encryption
|
||||
or decryption.
|
||||
*/
|
||||
#define MARK_AS_ENCRYPTION_CTX(cx) (cx)->inf.b[2] |= (uint8_t)0x01
|
||||
#define MARK_AS_DECRYPTION_CTX(cx) (cx)->inf.b[2] &= (uint8_t)0xfe
|
||||
|
||||
/* Initialise the key schedule from the user supplied key. The key
|
||||
length can be specified in bytes, with legal values of 16, 24
|
||||
and 32, or in bits, with legal values of 128, 192 and 256. These
|
||||
values correspond with Nk values of 4, 6 and 8 respectively.
|
||||
|
||||
The following macros implement a single cycle in the key
|
||||
schedule generation process. The number of cycles needed
|
||||
for each cx->n_col and nk value is:
|
||||
|
||||
nk = 4 5 6 7 8
|
||||
------------------------------
|
||||
cx->n_col = 4 10 9 8 7 7
|
||||
cx->n_col = 5 14 11 10 9 9
|
||||
cx->n_col = 6 19 15 12 11 11
|
||||
cx->n_col = 7 21 19 16 13 14
|
||||
cx->n_col = 8 29 23 19 17 14
|
||||
*/
|
||||
|
||||
#if defined( REDUCE_CODE_SIZE )
|
||||
# define ls_box ls_sub
|
||||
uint32_t ls_sub(const uint32_t t, const uint32_t n);
|
||||
# define inv_mcol im_sub
|
||||
uint32_t im_sub(const uint32_t x);
|
||||
# ifdef ENC_KS_UNROLL
|
||||
# undef ENC_KS_UNROLL
|
||||
# endif
|
||||
# ifdef DEC_KS_UNROLL
|
||||
# undef DEC_KS_UNROLL
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if (FUNCS_IN_C & ENC_KEYING_IN_C)
|
||||
|
||||
#if defined(AES_128) || defined( AES_VAR )
|
||||
|
||||
#define ke4(k,i) \
|
||||
{ k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; \
|
||||
k[4*(i)+5] = ss[1] ^= ss[0]; \
|
||||
k[4*(i)+6] = ss[2] ^= ss[1]; \
|
||||
k[4*(i)+7] = ss[3] ^= ss[2]; \
|
||||
}
|
||||
|
||||
AES_RETURN aes_xi(encrypt_key128)(const unsigned char *key, aes_encrypt_ctx cx[1])
|
||||
{ uint32_t ss[4];
|
||||
|
||||
cx->ks[0] = ss[0] = word_in(key, 0);
|
||||
cx->ks[1] = ss[1] = word_in(key, 1);
|
||||
cx->ks[2] = ss[2] = word_in(key, 2);
|
||||
cx->ks[3] = ss[3] = word_in(key, 3);
|
||||
|
||||
#ifdef ENC_KS_UNROLL
|
||||
ke4(cx->ks, 0); ke4(cx->ks, 1);
|
||||
ke4(cx->ks, 2); ke4(cx->ks, 3);
|
||||
ke4(cx->ks, 4); ke4(cx->ks, 5);
|
||||
ke4(cx->ks, 6); ke4(cx->ks, 7);
|
||||
ke4(cx->ks, 8);
|
||||
#else
|
||||
{ uint32_t i;
|
||||
for(i = 0; i < 9; ++i)
|
||||
ke4(cx->ks, i);
|
||||
}
|
||||
#endif
|
||||
ke4(cx->ks, 9);
|
||||
cx->inf.l = 0;
|
||||
cx->inf.b[0] = 10 * AES_BLOCK_SIZE;
|
||||
|
||||
#ifdef USE_VIA_ACE_IF_PRESENT
|
||||
if(VIA_ACE_AVAILABLE)
|
||||
cx->inf.b[1] = 0xff;
|
||||
#endif
|
||||
MARK_AS_ENCRYPTION_CTX(cx);
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(AES_192) || defined( AES_VAR )
|
||||
|
||||
#define kef6(k,i) \
|
||||
{ k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; \
|
||||
k[6*(i)+ 7] = ss[1] ^= ss[0]; \
|
||||
k[6*(i)+ 8] = ss[2] ^= ss[1]; \
|
||||
k[6*(i)+ 9] = ss[3] ^= ss[2]; \
|
||||
}
|
||||
|
||||
#define ke6(k,i) \
|
||||
{ kef6(k,i); \
|
||||
k[6*(i)+10] = ss[4] ^= ss[3]; \
|
||||
k[6*(i)+11] = ss[5] ^= ss[4]; \
|
||||
}
|
||||
|
||||
AES_RETURN aes_xi(encrypt_key192)(const unsigned char *key, aes_encrypt_ctx cx[1])
|
||||
{ uint32_t ss[6];
|
||||
|
||||
cx->ks[0] = ss[0] = word_in(key, 0);
|
||||
cx->ks[1] = ss[1] = word_in(key, 1);
|
||||
cx->ks[2] = ss[2] = word_in(key, 2);
|
||||
cx->ks[3] = ss[3] = word_in(key, 3);
|
||||
cx->ks[4] = ss[4] = word_in(key, 4);
|
||||
cx->ks[5] = ss[5] = word_in(key, 5);
|
||||
|
||||
#ifdef ENC_KS_UNROLL
|
||||
ke6(cx->ks, 0); ke6(cx->ks, 1);
|
||||
ke6(cx->ks, 2); ke6(cx->ks, 3);
|
||||
ke6(cx->ks, 4); ke6(cx->ks, 5);
|
||||
ke6(cx->ks, 6);
|
||||
#else
|
||||
{ uint32_t i;
|
||||
for(i = 0; i < 7; ++i)
|
||||
ke6(cx->ks, i);
|
||||
}
|
||||
#endif
|
||||
kef6(cx->ks, 7);
|
||||
cx->inf.l = 0;
|
||||
cx->inf.b[0] = 12 * AES_BLOCK_SIZE;
|
||||
|
||||
#ifdef USE_VIA_ACE_IF_PRESENT
|
||||
if(VIA_ACE_AVAILABLE)
|
||||
cx->inf.b[1] = 0xff;
|
||||
#endif
|
||||
MARK_AS_ENCRYPTION_CTX(cx);
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(AES_256) || defined( AES_VAR )
|
||||
|
||||
#define kef8(k,i) \
|
||||
{ k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; \
|
||||
k[8*(i)+ 9] = ss[1] ^= ss[0]; \
|
||||
k[8*(i)+10] = ss[2] ^= ss[1]; \
|
||||
k[8*(i)+11] = ss[3] ^= ss[2]; \
|
||||
}
|
||||
|
||||
#define ke8(k,i) \
|
||||
{ kef8(k,i); \
|
||||
k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); \
|
||||
k[8*(i)+13] = ss[5] ^= ss[4]; \
|
||||
k[8*(i)+14] = ss[6] ^= ss[5]; \
|
||||
k[8*(i)+15] = ss[7] ^= ss[6]; \
|
||||
}
|
||||
|
||||
AES_RETURN aes_xi(encrypt_key256)(const unsigned char *key, aes_encrypt_ctx cx[1])
|
||||
{ uint32_t ss[8];
|
||||
|
||||
cx->ks[0] = ss[0] = word_in(key, 0);
|
||||
cx->ks[1] = ss[1] = word_in(key, 1);
|
||||
cx->ks[2] = ss[2] = word_in(key, 2);
|
||||
cx->ks[3] = ss[3] = word_in(key, 3);
|
||||
cx->ks[4] = ss[4] = word_in(key, 4);
|
||||
cx->ks[5] = ss[5] = word_in(key, 5);
|
||||
cx->ks[6] = ss[6] = word_in(key, 6);
|
||||
cx->ks[7] = ss[7] = word_in(key, 7);
|
||||
|
||||
#ifdef ENC_KS_UNROLL
|
||||
ke8(cx->ks, 0); ke8(cx->ks, 1);
|
||||
ke8(cx->ks, 2); ke8(cx->ks, 3);
|
||||
ke8(cx->ks, 4); ke8(cx->ks, 5);
|
||||
#else
|
||||
{ uint32_t i;
|
||||
for(i = 0; i < 6; ++i)
|
||||
ke8(cx->ks, i);
|
||||
}
|
||||
#endif
|
||||
kef8(cx->ks, 6);
|
||||
cx->inf.l = 0;
|
||||
cx->inf.b[0] = 14 * AES_BLOCK_SIZE;
|
||||
|
||||
#ifdef USE_VIA_ACE_IF_PRESENT
|
||||
if(VIA_ACE_AVAILABLE)
|
||||
cx->inf.b[1] = 0xff;
|
||||
#endif
|
||||
MARK_AS_ENCRYPTION_CTX(cx);
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#if (FUNCS_IN_C & DEC_KEYING_IN_C)
|
||||
|
||||
/* this is used to store the decryption round keys */
|
||||
/* in forward or reverse order */
|
||||
|
||||
#ifdef AES_REV_DKS
|
||||
#define v(n,i) ((n) - (i) + 2 * ((i) & 3))
|
||||
#else
|
||||
#define v(n,i) (i)
|
||||
#endif
|
||||
|
||||
#if DEC_ROUND == NO_TABLES
|
||||
#define ff(x) (x)
|
||||
#else
|
||||
#define ff(x) inv_mcol(x)
|
||||
#if defined( dec_imvars )
|
||||
#define d_vars dec_imvars
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(AES_128) || defined( AES_VAR )
|
||||
|
||||
#define k4e(k,i) \
|
||||
{ k[v(40,(4*(i))+4)] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; \
|
||||
k[v(40,(4*(i))+5)] = ss[1] ^= ss[0]; \
|
||||
k[v(40,(4*(i))+6)] = ss[2] ^= ss[1]; \
|
||||
k[v(40,(4*(i))+7)] = ss[3] ^= ss[2]; \
|
||||
}
|
||||
|
||||
#if 1
|
||||
|
||||
#define kdf4(k,i) \
|
||||
{ ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; \
|
||||
ss[1] = ss[1] ^ ss[3]; \
|
||||
ss[2] = ss[2] ^ ss[3]; \
|
||||
ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; \
|
||||
ss[i % 4] ^= ss[4]; \
|
||||
ss[4] ^= k[v(40,(4*(i)))]; k[v(40,(4*(i))+4)] = ff(ss[4]); \
|
||||
ss[4] ^= k[v(40,(4*(i))+1)]; k[v(40,(4*(i))+5)] = ff(ss[4]); \
|
||||
ss[4] ^= k[v(40,(4*(i))+2)]; k[v(40,(4*(i))+6)] = ff(ss[4]); \
|
||||
ss[4] ^= k[v(40,(4*(i))+3)]; k[v(40,(4*(i))+7)] = ff(ss[4]); \
|
||||
}
|
||||
|
||||
#define kd4(k,i) \
|
||||
{ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; \
|
||||
ss[i % 4] ^= ss[4]; ss[4] = ff(ss[4]); \
|
||||
k[v(40,(4*(i))+4)] = ss[4] ^= k[v(40,(4*(i)))]; \
|
||||
k[v(40,(4*(i))+5)] = ss[4] ^= k[v(40,(4*(i))+1)]; \
|
||||
k[v(40,(4*(i))+6)] = ss[4] ^= k[v(40,(4*(i))+2)]; \
|
||||
k[v(40,(4*(i))+7)] = ss[4] ^= k[v(40,(4*(i))+3)]; \
|
||||
}
|
||||
|
||||
#define kdl4(k,i) \
|
||||
{ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; \
|
||||
k[v(40,(4*(i))+4)] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; \
|
||||
k[v(40,(4*(i))+5)] = ss[1] ^ ss[3]; \
|
||||
k[v(40,(4*(i))+6)] = ss[0]; \
|
||||
k[v(40,(4*(i))+7)] = ss[1]; \
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#define kdf4(k,i) \
|
||||
{ ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[v(40,(4*(i))+ 4)] = ff(ss[0]); \
|
||||
ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ff(ss[1]); \
|
||||
ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ff(ss[2]); \
|
||||
ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ff(ss[3]); \
|
||||
}
|
||||
|
||||
#define kd4(k,i) \
|
||||
{ ss[4] = ls_box(ss[3],3) ^ t_use(r,c)[i]; \
|
||||
ss[0] ^= ss[4]; ss[4] = ff(ss[4]); k[v(40,(4*(i))+ 4)] = ss[4] ^= k[v(40,(4*(i)))]; \
|
||||
ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ss[4] ^= k[v(40,(4*(i))+ 1)]; \
|
||||
ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ss[4] ^= k[v(40,(4*(i))+ 2)]; \
|
||||
ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ss[4] ^= k[v(40,(4*(i))+ 3)]; \
|
||||
}
|
||||
|
||||
#define kdl4(k,i) \
|
||||
{ ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[v(40,(4*(i))+ 4)] = ss[0]; \
|
||||
ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ss[1]; \
|
||||
ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ss[2]; \
|
||||
ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ss[3]; \
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
AES_RETURN aes_xi(decrypt_key128)(const unsigned char *key, aes_decrypt_ctx cx[1])
|
||||
{ uint32_t ss[5];
|
||||
#if defined( d_vars )
|
||||
d_vars;
|
||||
#endif
|
||||
|
||||
cx->ks[v(40,(0))] = ss[0] = word_in(key, 0);
|
||||
cx->ks[v(40,(1))] = ss[1] = word_in(key, 1);
|
||||
cx->ks[v(40,(2))] = ss[2] = word_in(key, 2);
|
||||
cx->ks[v(40,(3))] = ss[3] = word_in(key, 3);
|
||||
|
||||
#ifdef DEC_KS_UNROLL
|
||||
kdf4(cx->ks, 0); kd4(cx->ks, 1);
|
||||
kd4(cx->ks, 2); kd4(cx->ks, 3);
|
||||
kd4(cx->ks, 4); kd4(cx->ks, 5);
|
||||
kd4(cx->ks, 6); kd4(cx->ks, 7);
|
||||
kd4(cx->ks, 8); kdl4(cx->ks, 9);
|
||||
#else
|
||||
{ uint32_t i;
|
||||
for(i = 0; i < 10; ++i)
|
||||
k4e(cx->ks, i);
|
||||
#if !(DEC_ROUND == NO_TABLES)
|
||||
for(i = N_COLS; i < 10 * N_COLS; ++i)
|
||||
cx->ks[i] = inv_mcol(cx->ks[i]);
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
cx->inf.l = 0;
|
||||
cx->inf.b[0] = 10 * AES_BLOCK_SIZE;
|
||||
|
||||
#ifdef USE_VIA_ACE_IF_PRESENT
|
||||
if(VIA_ACE_AVAILABLE)
|
||||
cx->inf.b[1] = 0xff;
|
||||
#endif
|
||||
MARK_AS_DECRYPTION_CTX(cx);
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(AES_192) || defined( AES_VAR )
|
||||
|
||||
#define k6ef(k,i) \
|
||||
{ k[v(48,(6*(i))+ 6)] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; \
|
||||
k[v(48,(6*(i))+ 7)] = ss[1] ^= ss[0]; \
|
||||
k[v(48,(6*(i))+ 8)] = ss[2] ^= ss[1]; \
|
||||
k[v(48,(6*(i))+ 9)] = ss[3] ^= ss[2]; \
|
||||
}
|
||||
|
||||
#define k6e(k,i) \
|
||||
{ k6ef(k,i); \
|
||||
k[v(48,(6*(i))+10)] = ss[4] ^= ss[3]; \
|
||||
k[v(48,(6*(i))+11)] = ss[5] ^= ss[4]; \
|
||||
}
|
||||
|
||||
#define kdf6(k,i) \
|
||||
{ ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[v(48,(6*(i))+ 6)] = ff(ss[0]); \
|
||||
ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ff(ss[1]); \
|
||||
ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ff(ss[2]); \
|
||||
ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ff(ss[3]); \
|
||||
ss[4] ^= ss[3]; k[v(48,(6*(i))+10)] = ff(ss[4]); \
|
||||
ss[5] ^= ss[4]; k[v(48,(6*(i))+11)] = ff(ss[5]); \
|
||||
}
|
||||
|
||||
#define kd6(k,i) \
|
||||
{ ss[6] = ls_box(ss[5],3) ^ t_use(r,c)[i]; \
|
||||
ss[0] ^= ss[6]; ss[6] = ff(ss[6]); k[v(48,(6*(i))+ 6)] = ss[6] ^= k[v(48,(6*(i)))]; \
|
||||
ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ss[6] ^= k[v(48,(6*(i))+ 1)]; \
|
||||
ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ss[6] ^= k[v(48,(6*(i))+ 2)]; \
|
||||
ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ss[6] ^= k[v(48,(6*(i))+ 3)]; \
|
||||
ss[4] ^= ss[3]; k[v(48,(6*(i))+10)] = ss[6] ^= k[v(48,(6*(i))+ 4)]; \
|
||||
ss[5] ^= ss[4]; k[v(48,(6*(i))+11)] = ss[6] ^= k[v(48,(6*(i))+ 5)]; \
|
||||
}
|
||||
|
||||
#define kdl6(k,i) \
|
||||
{ ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[v(48,(6*(i))+ 6)] = ss[0]; \
|
||||
ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ss[1]; \
|
||||
ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ss[2]; \
|
||||
ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ss[3]; \
|
||||
}
|
||||
|
||||
AES_RETURN aes_xi(decrypt_key192)(const unsigned char *key, aes_decrypt_ctx cx[1])
|
||||
{ uint32_t ss[7];
|
||||
#if defined( d_vars )
|
||||
d_vars;
|
||||
#endif
|
||||
|
||||
cx->ks[v(48,(0))] = ss[0] = word_in(key, 0);
|
||||
cx->ks[v(48,(1))] = ss[1] = word_in(key, 1);
|
||||
cx->ks[v(48,(2))] = ss[2] = word_in(key, 2);
|
||||
cx->ks[v(48,(3))] = ss[3] = word_in(key, 3);
|
||||
|
||||
#ifdef DEC_KS_UNROLL
|
||||
ss[4] = word_in(key, 4);
|
||||
ss[5] = word_in(key, 5);
|
||||
cx->ks[v(48, (4))] = ff(ss[4]);
|
||||
cx->ks[v(48, (5))] = ff(ss[5]);
|
||||
kdf6(cx->ks, 0); kd6(cx->ks, 1);
|
||||
kd6(cx->ks, 2); kd6(cx->ks, 3);
|
||||
kd6(cx->ks, 4); kd6(cx->ks, 5);
|
||||
kd6(cx->ks, 6); kdl6(cx->ks, 7);
|
||||
#else
|
||||
cx->ks[v(48,(4))] = ss[4] = word_in(key, 4);
|
||||
cx->ks[v(48,(5))] = ss[5] = word_in(key, 5);
|
||||
{ uint32_t i;
|
||||
|
||||
for(i = 0; i < 7; ++i)
|
||||
k6e(cx->ks, i);
|
||||
k6ef(cx->ks, 7);
|
||||
#if !(DEC_ROUND == NO_TABLES)
|
||||
for(i = N_COLS; i < 12 * N_COLS; ++i)
|
||||
cx->ks[i] = inv_mcol(cx->ks[i]);
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
cx->inf.l = 0;
|
||||
cx->inf.b[0] = 12 * AES_BLOCK_SIZE;
|
||||
|
||||
#ifdef USE_VIA_ACE_IF_PRESENT
|
||||
if(VIA_ACE_AVAILABLE)
|
||||
cx->inf.b[1] = 0xff;
|
||||
#endif
|
||||
MARK_AS_DECRYPTION_CTX(cx);
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(AES_256) || defined( AES_VAR )
|
||||
|
||||
#define k8ef(k,i) \
|
||||
{ k[v(56,(8*(i))+ 8)] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; \
|
||||
k[v(56,(8*(i))+ 9)] = ss[1] ^= ss[0]; \
|
||||
k[v(56,(8*(i))+10)] = ss[2] ^= ss[1]; \
|
||||
k[v(56,(8*(i))+11)] = ss[3] ^= ss[2]; \
|
||||
}
|
||||
|
||||
#define k8e(k,i) \
|
||||
{ k8ef(k,i); \
|
||||
k[v(56,(8*(i))+12)] = ss[4] ^= ls_box(ss[3],0); \
|
||||
k[v(56,(8*(i))+13)] = ss[5] ^= ss[4]; \
|
||||
k[v(56,(8*(i))+14)] = ss[6] ^= ss[5]; \
|
||||
k[v(56,(8*(i))+15)] = ss[7] ^= ss[6]; \
|
||||
}
|
||||
|
||||
#define kdf8(k,i) \
|
||||
{ ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[v(56,(8*(i))+ 8)] = ff(ss[0]); \
|
||||
ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ff(ss[1]); \
|
||||
ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ff(ss[2]); \
|
||||
ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ff(ss[3]); \
|
||||
ss[4] ^= ls_box(ss[3],0); k[v(56,(8*(i))+12)] = ff(ss[4]); \
|
||||
ss[5] ^= ss[4]; k[v(56,(8*(i))+13)] = ff(ss[5]); \
|
||||
ss[6] ^= ss[5]; k[v(56,(8*(i))+14)] = ff(ss[6]); \
|
||||
ss[7] ^= ss[6]; k[v(56,(8*(i))+15)] = ff(ss[7]); \
|
||||
}
|
||||
|
||||
#define kd8(k,i) \
|
||||
{ ss[8] = ls_box(ss[7],3) ^ t_use(r,c)[i]; \
|
||||
ss[0] ^= ss[8]; ss[8] = ff(ss[8]); k[v(56,(8*(i))+ 8)] = ss[8] ^= k[v(56,(8*(i)))]; \
|
||||
ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ss[8] ^= k[v(56,(8*(i))+ 1)]; \
|
||||
ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ss[8] ^= k[v(56,(8*(i))+ 2)]; \
|
||||
ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ss[8] ^= k[v(56,(8*(i))+ 3)]; \
|
||||
ss[8] = ls_box(ss[3],0); \
|
||||
ss[4] ^= ss[8]; ss[8] = ff(ss[8]); k[v(56,(8*(i))+12)] = ss[8] ^= k[v(56,(8*(i))+ 4)]; \
|
||||
ss[5] ^= ss[4]; k[v(56,(8*(i))+13)] = ss[8] ^= k[v(56,(8*(i))+ 5)]; \
|
||||
ss[6] ^= ss[5]; k[v(56,(8*(i))+14)] = ss[8] ^= k[v(56,(8*(i))+ 6)]; \
|
||||
ss[7] ^= ss[6]; k[v(56,(8*(i))+15)] = ss[8] ^= k[v(56,(8*(i))+ 7)]; \
|
||||
}
|
||||
|
||||
#define kdl8(k,i) \
|
||||
{ ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[v(56,(8*(i))+ 8)] = ss[0]; \
|
||||
ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ss[1]; \
|
||||
ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ss[2]; \
|
||||
ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ss[3]; \
|
||||
}
|
||||
|
||||
AES_RETURN aes_xi(decrypt_key256)(const unsigned char *key, aes_decrypt_ctx cx[1])
|
||||
{ uint32_t ss[9];
|
||||
#if defined( d_vars )
|
||||
d_vars;
|
||||
#endif
|
||||
|
||||
cx->ks[v(56,(0))] = ss[0] = word_in(key, 0);
|
||||
cx->ks[v(56,(1))] = ss[1] = word_in(key, 1);
|
||||
cx->ks[v(56,(2))] = ss[2] = word_in(key, 2);
|
||||
cx->ks[v(56,(3))] = ss[3] = word_in(key, 3);
|
||||
|
||||
#ifdef DEC_KS_UNROLL
|
||||
ss[4] = word_in(key, 4);
|
||||
ss[5] = word_in(key, 5);
|
||||
ss[6] = word_in(key, 6);
|
||||
ss[7] = word_in(key, 7);
|
||||
cx->ks[v(56,(4))] = ff(ss[4]);
|
||||
cx->ks[v(56,(5))] = ff(ss[5]);
|
||||
cx->ks[v(56,(6))] = ff(ss[6]);
|
||||
cx->ks[v(56,(7))] = ff(ss[7]);
|
||||
kdf8(cx->ks, 0); kd8(cx->ks, 1);
|
||||
kd8(cx->ks, 2); kd8(cx->ks, 3);
|
||||
kd8(cx->ks, 4); kd8(cx->ks, 5);
|
||||
kdl8(cx->ks, 6);
|
||||
#else
|
||||
cx->ks[v(56,(4))] = ss[4] = word_in(key, 4);
|
||||
cx->ks[v(56,(5))] = ss[5] = word_in(key, 5);
|
||||
cx->ks[v(56,(6))] = ss[6] = word_in(key, 6);
|
||||
cx->ks[v(56,(7))] = ss[7] = word_in(key, 7);
|
||||
{ uint32_t i;
|
||||
|
||||
for(i = 0; i < 6; ++i)
|
||||
k8e(cx->ks, i);
|
||||
k8ef(cx->ks, 6);
|
||||
#if !(DEC_ROUND == NO_TABLES)
|
||||
for(i = N_COLS; i < 14 * N_COLS; ++i)
|
||||
cx->ks[i] = inv_mcol(cx->ks[i]);
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
cx->inf.l = 0;
|
||||
cx->inf.b[0] = 14 * AES_BLOCK_SIZE;
|
||||
|
||||
#ifdef USE_VIA_ACE_IF_PRESENT
|
||||
if(VIA_ACE_AVAILABLE)
|
||||
cx->inf.b[1] = 0xff;
|
||||
#endif
|
||||
MARK_AS_DECRYPTION_CTX(cx);
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#if defined( AES_VAR )
|
||||
|
||||
AES_RETURN aes_encrypt_key(const unsigned char *key, int key_len, aes_encrypt_ctx cx[1])
|
||||
{
|
||||
switch(key_len)
|
||||
{
|
||||
case 16: case 128: return aes_encrypt_key128(key, cx);
|
||||
case 24: case 192: return aes_encrypt_key192(key, cx);
|
||||
case 32: case 256: return aes_encrypt_key256(key, cx);
|
||||
default: return EXIT_FAILURE;
|
||||
}
|
||||
}
|
||||
|
||||
AES_RETURN aes_decrypt_key(const unsigned char *key, int key_len, aes_decrypt_ctx cx[1])
|
||||
{
|
||||
switch(key_len)
|
||||
{
|
||||
case 16: case 128: return aes_decrypt_key128(key, cx);
|
||||
case 24: case 192: return aes_decrypt_key192(key, cx);
|
||||
case 32: case 256: return aes_decrypt_key256(key, cx);
|
||||
default: return EXIT_FAILURE;
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
786
crypto/src/main/jni/final_key/aes/aesopt.h
Normal file
786
crypto/src/main/jni/final_key/aes/aesopt.h
Normal file
@@ -0,0 +1,786 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2013, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation.
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its operation, including, but not limited to, correctness
|
||||
and fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
|
||||
This file contains the compilation options for AES (Rijndael) and code
|
||||
that is common across encryption, key scheduling and table generation.
|
||||
|
||||
OPERATION
|
||||
|
||||
These source code files implement the AES algorithm Rijndael designed by
|
||||
Joan Daemen and Vincent Rijmen. This version is designed for the standard
|
||||
block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24
|
||||
and 32 bytes).
|
||||
|
||||
This version is designed for flexibility and speed using operations on
|
||||
32-bit words rather than operations on bytes. It can be compiled with
|
||||
either big or little endian internal byte order but is faster when the
|
||||
native byte order for the processor is used.
|
||||
|
||||
THE CIPHER INTERFACE
|
||||
|
||||
The cipher interface is implemented as an array of bytes in which lower
|
||||
AES bit sequence indexes map to higher numeric significance within bytes.
|
||||
|
||||
uint8_t (an unsigned 8-bit type)
|
||||
uint32_t (an unsigned 32-bit type)
|
||||
struct aes_encrypt_ctx (structure for the cipher encryption context)
|
||||
struct aes_decrypt_ctx (structure for the cipher decryption context)
|
||||
AES_RETURN the function return type
|
||||
|
||||
C subroutine calls:
|
||||
|
||||
AES_RETURN aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1]);
|
||||
AES_RETURN aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1]);
|
||||
AES_RETURN aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1]);
|
||||
AES_RETURN aes_encrypt(const unsigned char *in, unsigned char *out,
|
||||
const aes_encrypt_ctx cx[1]);
|
||||
|
||||
AES_RETURN aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1]);
|
||||
AES_RETURN aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1]);
|
||||
AES_RETURN aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1]);
|
||||
AES_RETURN aes_decrypt(const unsigned char *in, unsigned char *out,
|
||||
const aes_decrypt_ctx cx[1]);
|
||||
|
||||
IMPORTANT NOTE: If you are using this C interface with dynamic tables make sure that
|
||||
you call aes_init() before AES is used so that the tables are initialised.
|
||||
|
||||
C++ aes class subroutines:
|
||||
|
||||
Class AESencrypt for encryption
|
||||
|
||||
Constructors:
|
||||
AESencrypt(void)
|
||||
AESencrypt(const unsigned char *key) - 128 bit key
|
||||
Members:
|
||||
AES_RETURN key128(const unsigned char *key)
|
||||
AES_RETURN key192(const unsigned char *key)
|
||||
AES_RETURN key256(const unsigned char *key)
|
||||
AES_RETURN encrypt(const unsigned char *in, unsigned char *out) const
|
||||
|
||||
Class AESdecrypt for encryption
|
||||
Constructors:
|
||||
AESdecrypt(void)
|
||||
AESdecrypt(const unsigned char *key) - 128 bit key
|
||||
Members:
|
||||
AES_RETURN key128(const unsigned char *key)
|
||||
AES_RETURN key192(const unsigned char *key)
|
||||
AES_RETURN key256(const unsigned char *key)
|
||||
AES_RETURN decrypt(const unsigned char *in, unsigned char *out) const
|
||||
*/
|
||||
|
||||
#if !defined( _AESOPT_H )
|
||||
#define _AESOPT_H
|
||||
|
||||
#if defined( __cplusplus )
|
||||
#include "aescpp.h"
|
||||
#else
|
||||
#include "aes.h"
|
||||
#endif
|
||||
|
||||
/* PLATFORM SPECIFIC INCLUDES */
|
||||
|
||||
#include "brg_endian.h"
|
||||
|
||||
/* CONFIGURATION - THE USE OF DEFINES
|
||||
|
||||
Later in this section there are a number of defines that control the
|
||||
operation of the code. In each section, the purpose of each define is
|
||||
explained so that the relevant form can be included or excluded by
|
||||
setting either 1's or 0's respectively on the branches of the related
|
||||
#if clauses. The following local defines should not be changed.
|
||||
*/
|
||||
|
||||
#define ENCRYPTION_IN_C 1
|
||||
#define DECRYPTION_IN_C 2
|
||||
#define ENC_KEYING_IN_C 4
|
||||
#define DEC_KEYING_IN_C 8
|
||||
|
||||
#define NO_TABLES 0
|
||||
#define ONE_TABLE 1
|
||||
#define FOUR_TABLES 4
|
||||
#define NONE 0
|
||||
#define PARTIAL 1
|
||||
#define FULL 2
|
||||
|
||||
/* --- START OF USER CONFIGURED OPTIONS --- */
|
||||
|
||||
/* 1. BYTE ORDER WITHIN 32 BIT WORDS
|
||||
|
||||
The fundamental data processing units in Rijndael are 8-bit bytes. The
|
||||
input, output and key input are all enumerated arrays of bytes in which
|
||||
bytes are numbered starting at zero and increasing to one less than the
|
||||
number of bytes in the array in question. This enumeration is only used
|
||||
for naming bytes and does not imply any adjacency or order relationship
|
||||
from one byte to another. When these inputs and outputs are considered
|
||||
as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to
|
||||
byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte.
|
||||
In this implementation bits are numbered from 0 to 7 starting at the
|
||||
numerically least significant end of each byte (bit n represents 2^n).
|
||||
|
||||
However, Rijndael can be implemented more efficiently using 32-bit
|
||||
words by packing bytes into words so that bytes 4*n to 4*n+3 are placed
|
||||
into word[n]. While in principle these bytes can be assembled into words
|
||||
in any positions, this implementation only supports the two formats in
|
||||
which bytes in adjacent positions within words also have adjacent byte
|
||||
numbers. This order is called big-endian if the lowest numbered bytes
|
||||
in words have the highest numeric significance and little-endian if the
|
||||
opposite applies.
|
||||
|
||||
This code can work in either order irrespective of the order used by the
|
||||
machine on which it runs. Normally the internal byte order will be set
|
||||
to the order of the processor on which the code is to be run but this
|
||||
define can be used to reverse this in special situations
|
||||
|
||||
WARNING: Assembler code versions rely on PLATFORM_BYTE_ORDER being set.
|
||||
This define will hence be redefined later (in section 4) if necessary
|
||||
*/
|
||||
|
||||
#if 1
|
||||
# define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
|
||||
#elif 0
|
||||
# define ALGORITHM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#elif 0
|
||||
# define ALGORITHM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#else
|
||||
# error The algorithm byte order is not defined
|
||||
#endif
|
||||
|
||||
/* 2. Intel AES AND VIA ACE SUPPORT */
|
||||
|
||||
#if defined( __GNUC__ ) && defined( __i386__ ) && !defined(__BEOS__) \
|
||||
|| defined( _WIN32 ) && defined( _M_IX86 ) && !(defined( _WIN64 ) \
|
||||
|| defined( _WIN32_WCE ) || defined( _MSC_VER ) && ( _MSC_VER <= 800 ))
|
||||
# define VIA_ACE_POSSIBLE
|
||||
#endif
|
||||
|
||||
/* AESNI is supported by all Windows x64 compilers, but for Linux/GCC
|
||||
we have to test for SSE 2, SSE 3, and AES to before enabling it; */
|
||||
#if !defined( INTEL_AES_POSSIBLE )
|
||||
# if defined( _WIN64 ) && defined( _MSC_VER ) \
|
||||
|| defined( __GNUC__ ) && defined( __x86_64__ ) && \
|
||||
defined( __SSE2__ ) && defined( __SSE3__ ) && \
|
||||
defined( __AES__ )
|
||||
# define INTEL_AES_POSSIBLE
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* Define this option if support for the Intel AESNI is required
|
||||
If USE_INTEL_AES_IF_PRESENT is defined then AESNI will be used
|
||||
if it is detected (both present and enabled).
|
||||
|
||||
AESNI uses a decryption key schedule with the first decryption
|
||||
round key at the high end of the key schedule with the following
|
||||
round keys at lower positions in memory. So AES_REV_DKS must NOT
|
||||
be defined when AESNI will be used. Although it is unlikely that
|
||||
assembler code will be used with an AESNI build, if it is then
|
||||
AES_REV_DKS must NOT be defined when the assembler files are
|
||||
built (the definition of USE_INTEL_AES_IF_PRESENT in the assembler
|
||||
code files must match that here if they are used).
|
||||
*/
|
||||
|
||||
#if defined( INTEL_AES_POSSIBLE )
|
||||
# if 1 && !defined( USE_INTEL_AES_IF_PRESENT )
|
||||
# define USE_INTEL_AES_IF_PRESENT
|
||||
# endif
|
||||
#elif defined( USE_INTEL_AES_IF_PRESENT )
|
||||
# error: AES_NI is not available on this platform
|
||||
#endif
|
||||
|
||||
/* Define this option if support for the VIA ACE is required. This uses
|
||||
inline assembler instructions and is only implemented for the Microsoft,
|
||||
Intel and GCC compilers. If VIA ACE is known to be present, then defining
|
||||
ASSUME_VIA_ACE_PRESENT will remove the ordinary encryption/decryption
|
||||
code. If USE_VIA_ACE_IF_PRESENT is defined then VIA ACE will be used if
|
||||
it is detected (both present and enabled) but the normal AES code will
|
||||
also be present.
|
||||
|
||||
When VIA ACE is to be used, all AES encryption contexts MUST be 16 byte
|
||||
aligned; other input/output buffers do not need to be 16 byte aligned
|
||||
but there are very large performance gains if this can be arranged.
|
||||
VIA ACE also requires the decryption key schedule to be in reverse
|
||||
order (which later checks below ensure).
|
||||
|
||||
AES_REV_DKS must be set for assembler code used with a VIA ACE build
|
||||
*/
|
||||
|
||||
#if 1 && defined( VIA_ACE_POSSIBLE ) && !defined( USE_VIA_ACE_IF_PRESENT )
|
||||
# define USE_VIA_ACE_IF_PRESENT
|
||||
#endif
|
||||
|
||||
#if 0 && defined( VIA_ACE_POSSIBLE ) && !defined( ASSUME_VIA_ACE_PRESENT )
|
||||
# define ASSUME_VIA_ACE_PRESENT
|
||||
# endif
|
||||
|
||||
/* 3. ASSEMBLER SUPPORT
|
||||
|
||||
This define (which can be on the command line) enables the use of the
|
||||
assembler code routines for encryption, decryption and key scheduling
|
||||
as follows:
|
||||
|
||||
ASM_X86_V1C uses the assembler (aes_x86_v1.asm) with large tables for
|
||||
encryption and decryption and but with key scheduling in C
|
||||
ASM_X86_V2 uses assembler (aes_x86_v2.asm) with compressed tables for
|
||||
encryption, decryption and key scheduling
|
||||
ASM_X86_V2C uses assembler (aes_x86_v2.asm) with compressed tables for
|
||||
encryption and decryption and but with key scheduling in C
|
||||
ASM_AMD64_C uses assembler (aes_amd64.asm) with compressed tables for
|
||||
encryption and decryption and but with key scheduling in C
|
||||
|
||||
Change one 'if 0' below to 'if 1' to select the version or define
|
||||
as a compilation option.
|
||||
*/
|
||||
|
||||
#if 0 && !defined( ASM_X86_V1C )
|
||||
# define ASM_X86_V1C
|
||||
#elif 0 && !defined( ASM_X86_V2 )
|
||||
# define ASM_X86_V2
|
||||
#elif 0 && !defined( ASM_X86_V2C )
|
||||
# define ASM_X86_V2C
|
||||
#elif 0 && !defined( ASM_AMD64_C )
|
||||
# define ASM_AMD64_C
|
||||
#endif
|
||||
|
||||
#if defined( __i386 ) || defined( _M_IX86 )
|
||||
# define A32_
|
||||
#elif defined( __x86_64__ ) || defined( _M_X64 )
|
||||
# define A64_
|
||||
#endif
|
||||
|
||||
#if (defined ( ASM_X86_V1C ) || defined( ASM_X86_V2 ) || defined( ASM_X86_V2C )) \
|
||||
&& !defined( A32_ ) || defined( ASM_AMD64_C ) && !defined( A64_ )
|
||||
# error Assembler code is only available for x86 and AMD64 systems
|
||||
#endif
|
||||
|
||||
/* 4. FAST INPUT/OUTPUT OPERATIONS.
|
||||
|
||||
On some machines it is possible to improve speed by transferring the
|
||||
bytes in the input and output arrays to and from the internal 32-bit
|
||||
variables by addressing these arrays as if they are arrays of 32-bit
|
||||
words. On some machines this will always be possible but there may
|
||||
be a large performance penalty if the byte arrays are not aligned on
|
||||
the normal word boundaries. On other machines this technique will
|
||||
lead to memory access errors when such 32-bit word accesses are not
|
||||
properly aligned. The option SAFE_IO avoids such problems but will
|
||||
often be slower on those machines that support misaligned access
|
||||
(especially so if care is taken to align the input and output byte
|
||||
arrays on 32-bit word boundaries). If SAFE_IO is not defined it is
|
||||
assumed that access to byte arrays as if they are arrays of 32-bit
|
||||
words will not cause problems when such accesses are misaligned.
|
||||
*/
|
||||
#if 1 && !defined( _MSC_VER )
|
||||
# define SAFE_IO
|
||||
#endif
|
||||
|
||||
/* 5. LOOP UNROLLING
|
||||
|
||||
The code for encryption and decryption cycles through a number of rounds
|
||||
that can be implemented either in a loop or by expanding the code into a
|
||||
long sequence of instructions, the latter producing a larger program but
|
||||
one that will often be much faster. The latter is called loop unrolling.
|
||||
There are also potential speed advantages in expanding two iterations in
|
||||
a loop with half the number of iterations, which is called partial loop
|
||||
unrolling. The following options allow partial or full loop unrolling
|
||||
to be set independently for encryption and decryption
|
||||
*/
|
||||
#if 1
|
||||
# define ENC_UNROLL FULL
|
||||
#elif 0
|
||||
# define ENC_UNROLL PARTIAL
|
||||
#else
|
||||
# define ENC_UNROLL NONE
|
||||
#endif
|
||||
|
||||
#if 1
|
||||
# define DEC_UNROLL FULL
|
||||
#elif 0
|
||||
# define DEC_UNROLL PARTIAL
|
||||
#else
|
||||
# define DEC_UNROLL NONE
|
||||
#endif
|
||||
|
||||
#if 1
|
||||
# define ENC_KS_UNROLL
|
||||
#endif
|
||||
|
||||
#if 1
|
||||
# define DEC_KS_UNROLL
|
||||
#endif
|
||||
|
||||
/* 6. FAST FINITE FIELD OPERATIONS
|
||||
|
||||
If this section is included, tables are used to provide faster finite
|
||||
field arithmetic (this has no effect if STATIC_TABLES is defined).
|
||||
*/
|
||||
#if 1
|
||||
# define FF_TABLES
|
||||
#endif
|
||||
|
||||
/* 7. INTERNAL STATE VARIABLE FORMAT
|
||||
|
||||
The internal state of Rijndael is stored in a number of local 32-bit
|
||||
word variables which can be defined either as an array or as individual
|
||||
names variables. Include this section if you want to store these local
|
||||
variables in arrays. Otherwise individual local variables will be used.
|
||||
*/
|
||||
#if 1
|
||||
# define ARRAYS
|
||||
#endif
|
||||
|
||||
/* 8. FIXED OR DYNAMIC TABLES
|
||||
|
||||
When this section is included the tables used by the code are compiled
|
||||
statically into the binary file. Otherwise the subroutine aes_init()
|
||||
must be called to compute them before the code is first used.
|
||||
*/
|
||||
#if 1 && !(defined( _MSC_VER ) && ( _MSC_VER <= 800 ))
|
||||
# define STATIC_TABLES
|
||||
#endif
|
||||
|
||||
/* 9. MASKING OR CASTING FROM LONGER VALUES TO BYTES
|
||||
|
||||
In some systems it is better to mask longer values to extract bytes
|
||||
rather than using a cast. This option allows this choice.
|
||||
*/
|
||||
#if 0
|
||||
# define to_byte(x) ((uint8_t)(x))
|
||||
#else
|
||||
# define to_byte(x) ((x) & 0xff)
|
||||
#endif
|
||||
|
||||
/* 10. TABLE ALIGNMENT
|
||||
|
||||
On some systems speed will be improved by aligning the AES large lookup
|
||||
tables on particular boundaries. This define should be set to a power of
|
||||
two giving the desired alignment. It can be left undefined if alignment
|
||||
is not needed. This option is specific to the Microsoft VC++ compiler -
|
||||
it seems to sometimes cause trouble for the VC++ version 6 compiler.
|
||||
*/
|
||||
|
||||
#if 1 && defined( _MSC_VER ) && ( _MSC_VER >= 1300 )
|
||||
# define TABLE_ALIGN 32
|
||||
#endif
|
||||
|
||||
/* 11. REDUCE CODE AND TABLE SIZE
|
||||
|
||||
This replaces some expanded macros with function calls if AES_ASM_V2 or
|
||||
AES_ASM_V2C are defined
|
||||
*/
|
||||
|
||||
#if 1 && (defined( ASM_X86_V2 ) || defined( ASM_X86_V2C ))
|
||||
# define REDUCE_CODE_SIZE
|
||||
#endif
|
||||
|
||||
/* 12. TABLE OPTIONS
|
||||
|
||||
This cipher proceeds by repeating in a number of cycles known as 'rounds'
|
||||
which are implemented by a round function which can optionally be speeded
|
||||
up using tables. The basic tables are each 256 32-bit words, with either
|
||||
one or four tables being required for each round function depending on
|
||||
how much speed is required. The encryption and decryption round functions
|
||||
are different and the last encryption and decryption round functions are
|
||||
different again making four different round functions in all.
|
||||
|
||||
This means that:
|
||||
1. Normal encryption and decryption rounds can each use either 0, 1
|
||||
or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
|
||||
2. The last encryption and decryption rounds can also use either 0, 1
|
||||
or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
|
||||
|
||||
Include or exclude the appropriate definitions below to set the number
|
||||
of tables used by this implementation.
|
||||
*/
|
||||
|
||||
#if 1 /* set tables for the normal encryption round */
|
||||
# define ENC_ROUND FOUR_TABLES
|
||||
#elif 0
|
||||
# define ENC_ROUND ONE_TABLE
|
||||
#else
|
||||
# define ENC_ROUND NO_TABLES
|
||||
#endif
|
||||
|
||||
#if 1 /* set tables for the last encryption round */
|
||||
# define LAST_ENC_ROUND FOUR_TABLES
|
||||
#elif 0
|
||||
# define LAST_ENC_ROUND ONE_TABLE
|
||||
#else
|
||||
# define LAST_ENC_ROUND NO_TABLES
|
||||
#endif
|
||||
|
||||
#if 1 /* set tables for the normal decryption round */
|
||||
# define DEC_ROUND FOUR_TABLES
|
||||
#elif 0
|
||||
# define DEC_ROUND ONE_TABLE
|
||||
#else
|
||||
# define DEC_ROUND NO_TABLES
|
||||
#endif
|
||||
|
||||
#if 1 /* set tables for the last decryption round */
|
||||
# define LAST_DEC_ROUND FOUR_TABLES
|
||||
#elif 0
|
||||
# define LAST_DEC_ROUND ONE_TABLE
|
||||
#else
|
||||
# define LAST_DEC_ROUND NO_TABLES
|
||||
#endif
|
||||
|
||||
/* The decryption key schedule can be speeded up with tables in the same
|
||||
way that the round functions can. Include or exclude the following
|
||||
defines to set this requirement.
|
||||
*/
|
||||
#if 1
|
||||
# define KEY_SCHED FOUR_TABLES
|
||||
#elif 0
|
||||
# define KEY_SCHED ONE_TABLE
|
||||
#else
|
||||
# define KEY_SCHED NO_TABLES
|
||||
#endif
|
||||
|
||||
/* ---- END OF USER CONFIGURED OPTIONS ---- */
|
||||
|
||||
/* VIA ACE support is only available for VC++ and GCC */
|
||||
|
||||
#if !defined( _MSC_VER ) && !defined( __GNUC__ )
|
||||
# if defined( ASSUME_VIA_ACE_PRESENT )
|
||||
# undef ASSUME_VIA_ACE_PRESENT
|
||||
# endif
|
||||
# if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
# undef USE_VIA_ACE_IF_PRESENT
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if defined( ASSUME_VIA_ACE_PRESENT ) && !defined( USE_VIA_ACE_IF_PRESENT )
|
||||
# define USE_VIA_ACE_IF_PRESENT
|
||||
#endif
|
||||
|
||||
/* define to reverse decryption key schedule */
|
||||
#if 1 || defined( USE_VIA_ACE_IF_PRESENT ) && !defined ( AES_REV_DKS )
|
||||
# define AES_REV_DKS
|
||||
#endif
|
||||
|
||||
/* Intel AESNI uses a decryption key schedule in the encryption order */
|
||||
#if defined( USE_INTEL_AES_IF_PRESENT ) && defined ( AES_REV_DKS )
|
||||
# undef AES_REV_DKS
|
||||
#endif
|
||||
|
||||
/* Assembler support requires the use of platform byte order */
|
||||
|
||||
#if ( defined( ASM_X86_V1C ) || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C ) ) \
|
||||
&& (ALGORITHM_BYTE_ORDER != PLATFORM_BYTE_ORDER)
|
||||
# undef ALGORITHM_BYTE_ORDER
|
||||
# define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
|
||||
#endif
|
||||
|
||||
/* In this implementation the columns of the state array are each held in
|
||||
32-bit words. The state array can be held in various ways: in an array
|
||||
of words, in a number of individual word variables or in a number of
|
||||
processor registers. The following define maps a variable name x and
|
||||
a column number c to the way the state array variable is to be held.
|
||||
The first define below maps the state into an array x[c] whereas the
|
||||
second form maps the state into a number of individual variables x0,
|
||||
x1, etc. Another form could map individual state columns to machine
|
||||
register names.
|
||||
*/
|
||||
|
||||
#if defined( ARRAYS )
|
||||
# define s(x,c) x[c]
|
||||
#else
|
||||
# define s(x,c) x##c
|
||||
#endif
|
||||
|
||||
/* This implementation provides subroutines for encryption, decryption
|
||||
and for setting the three key lengths (separately) for encryption
|
||||
and decryption. Since not all functions are needed, masks are set
|
||||
up here to determine which will be implemented in C
|
||||
*/
|
||||
|
||||
#if !defined( AES_ENCRYPT )
|
||||
# define EFUNCS_IN_C 0
|
||||
#elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C ) \
|
||||
|| defined( ASM_X86_V2C ) || defined( ASM_AMD64_C )
|
||||
# define EFUNCS_IN_C ENC_KEYING_IN_C
|
||||
#elif !defined( ASM_X86_V2 )
|
||||
# define EFUNCS_IN_C ( ENCRYPTION_IN_C | ENC_KEYING_IN_C )
|
||||
#else
|
||||
# define EFUNCS_IN_C 0
|
||||
#endif
|
||||
|
||||
#if !defined( AES_DECRYPT )
|
||||
# define DFUNCS_IN_C 0
|
||||
#elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C ) \
|
||||
|| defined( ASM_X86_V2C ) || defined( ASM_AMD64_C )
|
||||
# define DFUNCS_IN_C DEC_KEYING_IN_C
|
||||
#elif !defined( ASM_X86_V2 )
|
||||
# define DFUNCS_IN_C ( DECRYPTION_IN_C | DEC_KEYING_IN_C )
|
||||
#else
|
||||
# define DFUNCS_IN_C 0
|
||||
#endif
|
||||
|
||||
#define FUNCS_IN_C ( EFUNCS_IN_C | DFUNCS_IN_C )
|
||||
|
||||
/* END OF CONFIGURATION OPTIONS */
|
||||
|
||||
#define RC_LENGTH (5 * (AES_BLOCK_SIZE / 4 - 2))
|
||||
|
||||
/* Disable or report errors on some combinations of options */
|
||||
|
||||
#if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES
|
||||
# undef LAST_ENC_ROUND
|
||||
# define LAST_ENC_ROUND NO_TABLES
|
||||
#elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES
|
||||
# undef LAST_ENC_ROUND
|
||||
# define LAST_ENC_ROUND ONE_TABLE
|
||||
#endif
|
||||
|
||||
#if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE
|
||||
# undef ENC_UNROLL
|
||||
# define ENC_UNROLL NONE
|
||||
#endif
|
||||
|
||||
#if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES
|
||||
# undef LAST_DEC_ROUND
|
||||
# define LAST_DEC_ROUND NO_TABLES
|
||||
#elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES
|
||||
# undef LAST_DEC_ROUND
|
||||
# define LAST_DEC_ROUND ONE_TABLE
|
||||
#endif
|
||||
|
||||
#if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE
|
||||
# undef DEC_UNROLL
|
||||
# define DEC_UNROLL NONE
|
||||
#endif
|
||||
|
||||
#if defined( bswap32 )
|
||||
# define aes_sw32 bswap32
|
||||
#elif defined( bswap_32 )
|
||||
# define aes_sw32 bswap_32
|
||||
#else
|
||||
# define brot(x,n) (((uint32_t)(x) << n) | ((uint32_t)(x) >> (32 - n)))
|
||||
# define aes_sw32(x) ((brot((x),8) & 0x00ff00ff) | (brot((x),24) & 0xff00ff00))
|
||||
#endif
|
||||
|
||||
/* upr(x,n): rotates bytes within words by n positions, moving bytes to
|
||||
higher index positions with wrap around into low positions
|
||||
ups(x,n): moves bytes by n positions to higher index positions in
|
||||
words but without wrap around
|
||||
bval(x,n): extracts a byte from a word
|
||||
|
||||
WARNING: The definitions given here are intended only for use with
|
||||
unsigned variables and with shift counts that are compile
|
||||
time constants
|
||||
*/
|
||||
|
||||
#if ( ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN )
|
||||
# define upr(x,n) (((uint32_t)(x) << (8 * (n))) | ((uint32_t)(x) >> (32 - 8 * (n))))
|
||||
# define ups(x,n) ((uint32_t) (x) << (8 * (n)))
|
||||
# define bval(x,n) to_byte((x) >> (8 * (n)))
|
||||
# define bytes2word(b0, b1, b2, b3) \
|
||||
(((uint32_t)(b3) << 24) | ((uint32_t)(b2) << 16) | ((uint32_t)(b1) << 8) | (b0))
|
||||
#endif
|
||||
|
||||
#if ( ALGORITHM_BYTE_ORDER == IS_BIG_ENDIAN )
|
||||
# define upr(x,n) (((uint32_t)(x) >> (8 * (n))) | ((uint32_t)(x) << (32 - 8 * (n))))
|
||||
# define ups(x,n) ((uint32_t) (x) >> (8 * (n)))
|
||||
# define bval(x,n) to_byte((x) >> (24 - 8 * (n)))
|
||||
# define bytes2word(b0, b1, b2, b3) \
|
||||
(((uint32_t)(b0) << 24) | ((uint32_t)(b1) << 16) | ((uint32_t)(b2) << 8) | (b3))
|
||||
#endif
|
||||
|
||||
#if defined( SAFE_IO )
|
||||
# define word_in(x,c) bytes2word(((const uint8_t*)(x)+4*c)[0], ((const uint8_t*)(x)+4*c)[1], \
|
||||
((const uint8_t*)(x)+4*c)[2], ((const uint8_t*)(x)+4*c)[3])
|
||||
# define word_out(x,c,v) { ((uint8_t*)(x)+4*c)[0] = bval(v,0); ((uint8_t*)(x)+4*c)[1] = bval(v,1); \
|
||||
((uint8_t*)(x)+4*c)[2] = bval(v,2); ((uint8_t*)(x)+4*c)[3] = bval(v,3); }
|
||||
#elif ( ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER )
|
||||
# define word_in(x,c) (*((uint32_t*)(x)+(c)))
|
||||
# define word_out(x,c,v) (*((uint32_t*)(x)+(c)) = (v))
|
||||
#else
|
||||
# define word_in(x,c) aes_sw32(*((uint32_t*)(x)+(c)))
|
||||
# define word_out(x,c,v) (*((uint32_t*)(x)+(c)) = aes_sw32(v))
|
||||
#endif
|
||||
|
||||
/* the finite field modular polynomial and elements */
|
||||
|
||||
#define WPOLY 0x011b
|
||||
#define BPOLY 0x1b
|
||||
|
||||
/* multiply four bytes in GF(2^8) by 'x' {02} in parallel */
|
||||
|
||||
#define gf_c1 0x80808080
|
||||
#define gf_c2 0x7f7f7f7f
|
||||
#define gf_mulx(x) ((((x) & gf_c2) << 1) ^ ((((x) & gf_c1) >> 7) * BPOLY))
|
||||
|
||||
/* The following defines provide alternative definitions of gf_mulx that might
|
||||
give improved performance if a fast 32-bit multiply is not available. Note
|
||||
that a temporary variable u needs to be defined where gf_mulx is used.
|
||||
|
||||
#define gf_mulx(x) (u = (x) & gf_c1, u |= (u >> 1), ((x) & gf_c2) << 1) ^ ((u >> 3) | (u >> 6))
|
||||
#define gf_c4 (0x01010101 * BPOLY)
|
||||
#define gf_mulx(x) (u = (x) & gf_c1, ((x) & gf_c2) << 1) ^ ((u - (u >> 7)) & gf_c4)
|
||||
*/
|
||||
|
||||
/* Work out which tables are needed for the different options */
|
||||
|
||||
#if defined( ASM_X86_V1C )
|
||||
# if defined( ENC_ROUND )
|
||||
# undef ENC_ROUND
|
||||
# endif
|
||||
# define ENC_ROUND FOUR_TABLES
|
||||
# if defined( LAST_ENC_ROUND )
|
||||
# undef LAST_ENC_ROUND
|
||||
# endif
|
||||
# define LAST_ENC_ROUND FOUR_TABLES
|
||||
# if defined( DEC_ROUND )
|
||||
# undef DEC_ROUND
|
||||
# endif
|
||||
# define DEC_ROUND FOUR_TABLES
|
||||
# if defined( LAST_DEC_ROUND )
|
||||
# undef LAST_DEC_ROUND
|
||||
# endif
|
||||
# define LAST_DEC_ROUND FOUR_TABLES
|
||||
# if defined( KEY_SCHED )
|
||||
# undef KEY_SCHED
|
||||
# define KEY_SCHED FOUR_TABLES
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if ( FUNCS_IN_C & ENCRYPTION_IN_C ) || defined( ASM_X86_V1C )
|
||||
# if ENC_ROUND == ONE_TABLE
|
||||
# define FT1_SET
|
||||
# elif ENC_ROUND == FOUR_TABLES
|
||||
# define FT4_SET
|
||||
# else
|
||||
# define SBX_SET
|
||||
# endif
|
||||
# if LAST_ENC_ROUND == ONE_TABLE
|
||||
# define FL1_SET
|
||||
# elif LAST_ENC_ROUND == FOUR_TABLES
|
||||
# define FL4_SET
|
||||
# elif !defined( SBX_SET )
|
||||
# define SBX_SET
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if ( FUNCS_IN_C & DECRYPTION_IN_C ) || defined( ASM_X86_V1C )
|
||||
# if DEC_ROUND == ONE_TABLE
|
||||
# define IT1_SET
|
||||
# elif DEC_ROUND == FOUR_TABLES
|
||||
# define IT4_SET
|
||||
# else
|
||||
# define ISB_SET
|
||||
# endif
|
||||
# if LAST_DEC_ROUND == ONE_TABLE
|
||||
# define IL1_SET
|
||||
# elif LAST_DEC_ROUND == FOUR_TABLES
|
||||
# define IL4_SET
|
||||
# elif !defined(ISB_SET)
|
||||
# define ISB_SET
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if !(defined( REDUCE_CODE_SIZE ) && (defined( ASM_X86_V2 ) || defined( ASM_X86_V2C )))
|
||||
# if ((FUNCS_IN_C & ENC_KEYING_IN_C) || (FUNCS_IN_C & DEC_KEYING_IN_C))
|
||||
# if KEY_SCHED == ONE_TABLE
|
||||
# if !defined( FL1_SET ) && !defined( FL4_SET )
|
||||
# define LS1_SET
|
||||
# endif
|
||||
# elif KEY_SCHED == FOUR_TABLES
|
||||
# if !defined( FL4_SET )
|
||||
# define LS4_SET
|
||||
# endif
|
||||
# elif !defined( SBX_SET )
|
||||
# define SBX_SET
|
||||
# endif
|
||||
# endif
|
||||
# if (FUNCS_IN_C & DEC_KEYING_IN_C)
|
||||
# if KEY_SCHED == ONE_TABLE
|
||||
# define IM1_SET
|
||||
# elif KEY_SCHED == FOUR_TABLES
|
||||
# define IM4_SET
|
||||
# elif !defined( SBX_SET )
|
||||
# define SBX_SET
|
||||
# endif
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* generic definitions of Rijndael macros that use tables */
|
||||
|
||||
#define no_table(x,box,vf,rf,c) bytes2word( \
|
||||
box[bval(vf(x,0,c),rf(0,c))], \
|
||||
box[bval(vf(x,1,c),rf(1,c))], \
|
||||
box[bval(vf(x,2,c),rf(2,c))], \
|
||||
box[bval(vf(x,3,c),rf(3,c))])
|
||||
|
||||
#define one_table(x,op,tab,vf,rf,c) \
|
||||
( tab[bval(vf(x,0,c),rf(0,c))] \
|
||||
^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \
|
||||
^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \
|
||||
^ op(tab[bval(vf(x,3,c),rf(3,c))],3))
|
||||
|
||||
#define four_tables(x,tab,vf,rf,c) \
|
||||
( tab[0][bval(vf(x,0,c),rf(0,c))] \
|
||||
^ tab[1][bval(vf(x,1,c),rf(1,c))] \
|
||||
^ tab[2][bval(vf(x,2,c),rf(2,c))] \
|
||||
^ tab[3][bval(vf(x,3,c),rf(3,c))])
|
||||
|
||||
#define vf1(x,r,c) (x)
|
||||
#define rf1(r,c) (r)
|
||||
#define rf2(r,c) ((8+r-c)&3)
|
||||
|
||||
/* perform forward and inverse column mix operation on four bytes in long word x in */
|
||||
/* parallel. NOTE: x must be a simple variable, NOT an expression in these macros. */
|
||||
|
||||
#if !(defined( REDUCE_CODE_SIZE ) && (defined( ASM_X86_V2 ) || defined( ASM_X86_V2C )))
|
||||
|
||||
#if defined( FM4_SET ) /* not currently used */
|
||||
# define fwd_mcol(x) four_tables(x,t_use(f,m),vf1,rf1,0)
|
||||
#elif defined( FM1_SET ) /* not currently used */
|
||||
# define fwd_mcol(x) one_table(x,upr,t_use(f,m),vf1,rf1,0)
|
||||
#else
|
||||
# define dec_fmvars uint32_t g2
|
||||
# define fwd_mcol(x) (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ upr((x), 2) ^ upr((x), 1))
|
||||
#endif
|
||||
|
||||
#if defined( IM4_SET )
|
||||
# define inv_mcol(x) four_tables(x,t_use(i,m),vf1,rf1,0)
|
||||
#elif defined( IM1_SET )
|
||||
# define inv_mcol(x) one_table(x,upr,t_use(i,m),vf1,rf1,0)
|
||||
#else
|
||||
# define dec_imvars uint32_t g2, g4, g9
|
||||
# define inv_mcol(x) (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = (x) ^ gf_mulx(g4), g4 ^= g9, \
|
||||
(x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ upr(g4, 2) ^ upr(g9, 1))
|
||||
#endif
|
||||
|
||||
#if defined( FL4_SET )
|
||||
# define ls_box(x,c) four_tables(x,t_use(f,l),vf1,rf2,c)
|
||||
#elif defined( LS4_SET )
|
||||
# define ls_box(x,c) four_tables(x,t_use(l,s),vf1,rf2,c)
|
||||
#elif defined( FL1_SET )
|
||||
# define ls_box(x,c) one_table(x,upr,t_use(f,l),vf1,rf2,c)
|
||||
#elif defined( LS1_SET )
|
||||
# define ls_box(x,c) one_table(x,upr,t_use(l,s),vf1,rf2,c)
|
||||
#else
|
||||
# define ls_box(x,c) no_table(x,t_use(s,box),vf1,rf2,c)
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#if defined( ASM_X86_V1C ) && defined( AES_DECRYPT ) && !defined( ISB_SET )
|
||||
# define ISB_SET
|
||||
#endif
|
||||
|
||||
#endif
|
||||
418
crypto/src/main/jni/final_key/aes/aestab.c
Normal file
418
crypto/src/main/jni/final_key/aes/aestab.c
Normal file
@@ -0,0 +1,418 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2013, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation.
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its operation, including, but not limited to, correctness
|
||||
and fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
*/
|
||||
|
||||
#define DO_TABLES
|
||||
|
||||
#include "aes.h"
|
||||
#include "aesopt.h"
|
||||
|
||||
#if defined(STATIC_TABLES)
|
||||
|
||||
#define sb_data(w) {\
|
||||
w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), w(0xc5),\
|
||||
w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), w(0xab), w(0x76),\
|
||||
w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), w(0x59), w(0x47), w(0xf0),\
|
||||
w(0xad), w(0xd4), w(0xa2), w(0xaf), w(0x9c), w(0xa4), w(0x72), w(0xc0),\
|
||||
w(0xb7), w(0xfd), w(0x93), w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc),\
|
||||
w(0x34), w(0xa5), w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15),\
|
||||
w(0x04), w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a),\
|
||||
w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), w(0x75),\
|
||||
w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), w(0x5a), w(0xa0),\
|
||||
w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), w(0xe3), w(0x2f), w(0x84),\
|
||||
w(0x53), w(0xd1), w(0x00), w(0xed), w(0x20), w(0xfc), w(0xb1), w(0x5b),\
|
||||
w(0x6a), w(0xcb), w(0xbe), w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf),\
|
||||
w(0xd0), w(0xef), w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85),\
|
||||
w(0x45), w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8),\
|
||||
w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), w(0xf5),\
|
||||
w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), w(0xf3), w(0xd2),\
|
||||
w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), w(0x97), w(0x44), w(0x17),\
|
||||
w(0xc4), w(0xa7), w(0x7e), w(0x3d), w(0x64), w(0x5d), w(0x19), w(0x73),\
|
||||
w(0x60), w(0x81), w(0x4f), w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88),\
|
||||
w(0x46), w(0xee), w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb),\
|
||||
w(0xe0), w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c),\
|
||||
w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), w(0x79),\
|
||||
w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), w(0x4e), w(0xa9),\
|
||||
w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), w(0x7a), w(0xae), w(0x08),\
|
||||
w(0xba), w(0x78), w(0x25), w(0x2e), w(0x1c), w(0xa6), w(0xb4), w(0xc6),\
|
||||
w(0xe8), w(0xdd), w(0x74), w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a),\
|
||||
w(0x70), w(0x3e), w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e),\
|
||||
w(0x61), w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e),\
|
||||
w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), w(0x94),\
|
||||
w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), w(0x28), w(0xdf),\
|
||||
w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), w(0xe6), w(0x42), w(0x68),\
|
||||
w(0x41), w(0x99), w(0x2d), w(0x0f), w(0xb0), w(0x54), w(0xbb), w(0x16) }
|
||||
|
||||
#define isb_data(w) {\
|
||||
w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), w(0x38),\
|
||||
w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), w(0xd7), w(0xfb),\
|
||||
w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), w(0x2f), w(0xff), w(0x87),\
|
||||
w(0x34), w(0x8e), w(0x43), w(0x44), w(0xc4), w(0xde), w(0xe9), w(0xcb),\
|
||||
w(0x54), w(0x7b), w(0x94), w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d),\
|
||||
w(0xee), w(0x4c), w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e),\
|
||||
w(0x08), w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2),\
|
||||
w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), w(0x25),\
|
||||
w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), w(0x98), w(0x16),\
|
||||
w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), w(0x65), w(0xb6), w(0x92),\
|
||||
w(0x6c), w(0x70), w(0x48), w(0x50), w(0xfd), w(0xed), w(0xb9), w(0xda),\
|
||||
w(0x5e), w(0x15), w(0x46), w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84),\
|
||||
w(0x90), w(0xd8), w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a),\
|
||||
w(0xf7), w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06),\
|
||||
w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), w(0x02),\
|
||||
w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), w(0x8a), w(0x6b),\
|
||||
w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), w(0x67), w(0xdc), w(0xea),\
|
||||
w(0x97), w(0xf2), w(0xcf), w(0xce), w(0xf0), w(0xb4), w(0xe6), w(0x73),\
|
||||
w(0x96), w(0xac), w(0x74), w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85),\
|
||||
w(0xe2), w(0xf9), w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e),\
|
||||
w(0x47), w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89),\
|
||||
w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), w(0x1b),\
|
||||
w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), w(0x79), w(0x20),\
|
||||
w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), w(0xcd), w(0x5a), w(0xf4),\
|
||||
w(0x1f), w(0xdd), w(0xa8), w(0x33), w(0x88), w(0x07), w(0xc7), w(0x31),\
|
||||
w(0xb1), w(0x12), w(0x10), w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f),\
|
||||
w(0x60), w(0x51), w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d),\
|
||||
w(0x2d), w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef),\
|
||||
w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), w(0xb0),\
|
||||
w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), w(0x99), w(0x61),\
|
||||
w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), w(0x77), w(0xd6), w(0x26),\
|
||||
w(0xe1), w(0x69), w(0x14), w(0x63), w(0x55), w(0x21), w(0x0c), w(0x7d) }
|
||||
|
||||
#define mm_data(w) {\
|
||||
w(0x00), w(0x01), w(0x02), w(0x03), w(0x04), w(0x05), w(0x06), w(0x07),\
|
||||
w(0x08), w(0x09), w(0x0a), w(0x0b), w(0x0c), w(0x0d), w(0x0e), w(0x0f),\
|
||||
w(0x10), w(0x11), w(0x12), w(0x13), w(0x14), w(0x15), w(0x16), w(0x17),\
|
||||
w(0x18), w(0x19), w(0x1a), w(0x1b), w(0x1c), w(0x1d), w(0x1e), w(0x1f),\
|
||||
w(0x20), w(0x21), w(0x22), w(0x23), w(0x24), w(0x25), w(0x26), w(0x27),\
|
||||
w(0x28), w(0x29), w(0x2a), w(0x2b), w(0x2c), w(0x2d), w(0x2e), w(0x2f),\
|
||||
w(0x30), w(0x31), w(0x32), w(0x33), w(0x34), w(0x35), w(0x36), w(0x37),\
|
||||
w(0x38), w(0x39), w(0x3a), w(0x3b), w(0x3c), w(0x3d), w(0x3e), w(0x3f),\
|
||||
w(0x40), w(0x41), w(0x42), w(0x43), w(0x44), w(0x45), w(0x46), w(0x47),\
|
||||
w(0x48), w(0x49), w(0x4a), w(0x4b), w(0x4c), w(0x4d), w(0x4e), w(0x4f),\
|
||||
w(0x50), w(0x51), w(0x52), w(0x53), w(0x54), w(0x55), w(0x56), w(0x57),\
|
||||
w(0x58), w(0x59), w(0x5a), w(0x5b), w(0x5c), w(0x5d), w(0x5e), w(0x5f),\
|
||||
w(0x60), w(0x61), w(0x62), w(0x63), w(0x64), w(0x65), w(0x66), w(0x67),\
|
||||
w(0x68), w(0x69), w(0x6a), w(0x6b), w(0x6c), w(0x6d), w(0x6e), w(0x6f),\
|
||||
w(0x70), w(0x71), w(0x72), w(0x73), w(0x74), w(0x75), w(0x76), w(0x77),\
|
||||
w(0x78), w(0x79), w(0x7a), w(0x7b), w(0x7c), w(0x7d), w(0x7e), w(0x7f),\
|
||||
w(0x80), w(0x81), w(0x82), w(0x83), w(0x84), w(0x85), w(0x86), w(0x87),\
|
||||
w(0x88), w(0x89), w(0x8a), w(0x8b), w(0x8c), w(0x8d), w(0x8e), w(0x8f),\
|
||||
w(0x90), w(0x91), w(0x92), w(0x93), w(0x94), w(0x95), w(0x96), w(0x97),\
|
||||
w(0x98), w(0x99), w(0x9a), w(0x9b), w(0x9c), w(0x9d), w(0x9e), w(0x9f),\
|
||||
w(0xa0), w(0xa1), w(0xa2), w(0xa3), w(0xa4), w(0xa5), w(0xa6), w(0xa7),\
|
||||
w(0xa8), w(0xa9), w(0xaa), w(0xab), w(0xac), w(0xad), w(0xae), w(0xaf),\
|
||||
w(0xb0), w(0xb1), w(0xb2), w(0xb3), w(0xb4), w(0xb5), w(0xb6), w(0xb7),\
|
||||
w(0xb8), w(0xb9), w(0xba), w(0xbb), w(0xbc), w(0xbd), w(0xbe), w(0xbf),\
|
||||
w(0xc0), w(0xc1), w(0xc2), w(0xc3), w(0xc4), w(0xc5), w(0xc6), w(0xc7),\
|
||||
w(0xc8), w(0xc9), w(0xca), w(0xcb), w(0xcc), w(0xcd), w(0xce), w(0xcf),\
|
||||
w(0xd0), w(0xd1), w(0xd2), w(0xd3), w(0xd4), w(0xd5), w(0xd6), w(0xd7),\
|
||||
w(0xd8), w(0xd9), w(0xda), w(0xdb), w(0xdc), w(0xdd), w(0xde), w(0xdf),\
|
||||
w(0xe0), w(0xe1), w(0xe2), w(0xe3), w(0xe4), w(0xe5), w(0xe6), w(0xe7),\
|
||||
w(0xe8), w(0xe9), w(0xea), w(0xeb), w(0xec), w(0xed), w(0xee), w(0xef),\
|
||||
w(0xf0), w(0xf1), w(0xf2), w(0xf3), w(0xf4), w(0xf5), w(0xf6), w(0xf7),\
|
||||
w(0xf8), w(0xf9), w(0xfa), w(0xfb), w(0xfc), w(0xfd), w(0xfe), w(0xff) }
|
||||
|
||||
#define rc_data(w) {\
|
||||
w(0x01), w(0x02), w(0x04), w(0x08), w(0x10),w(0x20), w(0x40), w(0x80),\
|
||||
w(0x1b), w(0x36) }
|
||||
|
||||
#define h0(x) (x)
|
||||
|
||||
#define w0(p) bytes2word(p, 0, 0, 0)
|
||||
#define w1(p) bytes2word(0, p, 0, 0)
|
||||
#define w2(p) bytes2word(0, 0, p, 0)
|
||||
#define w3(p) bytes2word(0, 0, 0, p)
|
||||
|
||||
#define u0(p) bytes2word(f2(p), p, p, f3(p))
|
||||
#define u1(p) bytes2word(f3(p), f2(p), p, p)
|
||||
#define u2(p) bytes2word(p, f3(p), f2(p), p)
|
||||
#define u3(p) bytes2word(p, p, f3(p), f2(p))
|
||||
|
||||
#define v0(p) bytes2word(fe(p), f9(p), fd(p), fb(p))
|
||||
#define v1(p) bytes2word(fb(p), fe(p), f9(p), fd(p))
|
||||
#define v2(p) bytes2word(fd(p), fb(p), fe(p), f9(p))
|
||||
#define v3(p) bytes2word(f9(p), fd(p), fb(p), fe(p))
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(STATIC_TABLES) || !defined(FF_TABLES)
|
||||
|
||||
#define f2(x) ((x<<1) ^ (((x>>7) & 1) * WPOLY))
|
||||
#define f4(x) ((x<<2) ^ (((x>>6) & 1) * WPOLY) ^ (((x>>6) & 2) * WPOLY))
|
||||
#define f8(x) ((x<<3) ^ (((x>>5) & 1) * WPOLY) ^ (((x>>5) & 2) * WPOLY) \
|
||||
^ (((x>>5) & 4) * WPOLY))
|
||||
#define f3(x) (f2(x) ^ x)
|
||||
#define f9(x) (f8(x) ^ x)
|
||||
#define fb(x) (f8(x) ^ f2(x) ^ x)
|
||||
#define fd(x) (f8(x) ^ f4(x) ^ x)
|
||||
#define fe(x) (f8(x) ^ f4(x) ^ f2(x))
|
||||
|
||||
#else
|
||||
|
||||
#define f2(x) ((x) ? pow[log[x] + 0x19] : 0)
|
||||
#define f3(x) ((x) ? pow[log[x] + 0x01] : 0)
|
||||
#define f9(x) ((x) ? pow[log[x] + 0xc7] : 0)
|
||||
#define fb(x) ((x) ? pow[log[x] + 0x68] : 0)
|
||||
#define fd(x) ((x) ? pow[log[x] + 0xee] : 0)
|
||||
#define fe(x) ((x) ? pow[log[x] + 0xdf] : 0)
|
||||
|
||||
#endif
|
||||
|
||||
#include "aestab.h"
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#if defined(STATIC_TABLES)
|
||||
|
||||
/* implemented in case of wrong call for fixed tables */
|
||||
|
||||
AES_RETURN aes_init(void)
|
||||
{
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#else /* Generate the tables for the dynamic table option */
|
||||
|
||||
#if defined(FF_TABLES)
|
||||
|
||||
#define gf_inv(x) ((x) ? pow[ 255 - log[x]] : 0)
|
||||
|
||||
#else
|
||||
|
||||
/* It will generally be sensible to use tables to compute finite
|
||||
field multiplies and inverses but where memory is scarse this
|
||||
code might sometimes be better. But it only has effect during
|
||||
initialisation so its pretty unimportant in overall terms.
|
||||
*/
|
||||
|
||||
/* return 2 ^ (n - 1) where n is the bit number of the highest bit
|
||||
set in x with x in the range 1 < x < 0x00000200. This form is
|
||||
used so that locals within fi can be bytes rather than words
|
||||
*/
|
||||
|
||||
static uint8_t hibit(const uint32_t x)
|
||||
{ uint8_t r = (uint8_t)((x >> 1) | (x >> 2));
|
||||
|
||||
r |= (r >> 2);
|
||||
r |= (r >> 4);
|
||||
return (r + 1) >> 1;
|
||||
}
|
||||
|
||||
/* return the inverse of the finite field element x */
|
||||
|
||||
static uint8_t gf_inv(const uint8_t x)
|
||||
{ uint8_t p1 = x, p2 = BPOLY, n1 = hibit(x), n2 = 0x80, v1 = 1, v2 = 0;
|
||||
|
||||
if(x < 2)
|
||||
return x;
|
||||
|
||||
for( ; ; )
|
||||
{
|
||||
if(n1)
|
||||
while(n2 >= n1) /* divide polynomial p2 by p1 */
|
||||
{
|
||||
n2 /= n1; /* shift smaller polynomial left */
|
||||
p2 ^= (p1 * n2) & 0xff; /* and remove from larger one */
|
||||
v2 ^= v1 * n2; /* shift accumulated value and */
|
||||
n2 = hibit(p2); /* add into result */
|
||||
}
|
||||
else
|
||||
return v1;
|
||||
|
||||
if(n2) /* repeat with values swapped */
|
||||
while(n1 >= n2)
|
||||
{
|
||||
n1 /= n2;
|
||||
p1 ^= p2 * n1;
|
||||
v1 ^= v2 * n1;
|
||||
n1 = hibit(p1);
|
||||
}
|
||||
else
|
||||
return v2;
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* The forward and inverse affine transformations used in the S-box */
|
||||
uint8_t fwd_affine(const uint8_t x)
|
||||
{ uint32_t w = x;
|
||||
w ^= (w << 1) ^ (w << 2) ^ (w << 3) ^ (w << 4);
|
||||
return 0x63 ^ ((w ^ (w >> 8)) & 0xff);
|
||||
}
|
||||
|
||||
uint8_t inv_affine(const uint8_t x)
|
||||
{ uint32_t w = x;
|
||||
w = (w << 1) ^ (w << 3) ^ (w << 6);
|
||||
return 0x05 ^ ((w ^ (w >> 8)) & 0xff);
|
||||
}
|
||||
|
||||
static int init = 0;
|
||||
|
||||
AES_RETURN aes_init(void)
|
||||
{ uint32_t i, w;
|
||||
|
||||
#if defined(FF_TABLES)
|
||||
|
||||
uint8_t pow[512], log[256];
|
||||
|
||||
if(init)
|
||||
return EXIT_SUCCESS;
|
||||
/* log and power tables for GF(2^8) finite field with
|
||||
WPOLY as modular polynomial - the simplest primitive
|
||||
root is 0x03, used here to generate the tables
|
||||
*/
|
||||
|
||||
i = 0; w = 1;
|
||||
do
|
||||
{
|
||||
pow[i] = (uint8_t)w;
|
||||
pow[i + 255] = (uint8_t)w;
|
||||
log[w] = (uint8_t)i++;
|
||||
w ^= (w << 1) ^ (w & 0x80 ? WPOLY : 0);
|
||||
}
|
||||
while (w != 1);
|
||||
|
||||
#else
|
||||
if(init)
|
||||
return EXIT_SUCCESS;
|
||||
#endif
|
||||
|
||||
for(i = 0, w = 1; i < RC_LENGTH; ++i)
|
||||
{
|
||||
t_set(r,c)[i] = bytes2word(w, 0, 0, 0);
|
||||
w = f2(w);
|
||||
}
|
||||
|
||||
for(i = 0; i < 256; ++i)
|
||||
{ uint8_t b;
|
||||
|
||||
b = fwd_affine(gf_inv((uint8_t)i));
|
||||
w = bytes2word(f2(b), b, b, f3(b));
|
||||
|
||||
#if defined( SBX_SET )
|
||||
t_set(s,box)[i] = b;
|
||||
#endif
|
||||
|
||||
#if defined( FT1_SET ) /* tables for a normal encryption round */
|
||||
t_set(f,n)[i] = w;
|
||||
#endif
|
||||
#if defined( FT4_SET )
|
||||
t_set(f,n)[0][i] = w;
|
||||
t_set(f,n)[1][i] = upr(w,1);
|
||||
t_set(f,n)[2][i] = upr(w,2);
|
||||
t_set(f,n)[3][i] = upr(w,3);
|
||||
#endif
|
||||
w = bytes2word(b, 0, 0, 0);
|
||||
|
||||
#if defined( FL1_SET ) /* tables for last encryption round (may also */
|
||||
t_set(f,l)[i] = w; /* be used in the key schedule) */
|
||||
#endif
|
||||
#if defined( FL4_SET )
|
||||
t_set(f,l)[0][i] = w;
|
||||
t_set(f,l)[1][i] = upr(w,1);
|
||||
t_set(f,l)[2][i] = upr(w,2);
|
||||
t_set(f,l)[3][i] = upr(w,3);
|
||||
#endif
|
||||
|
||||
#if defined( LS1_SET ) /* table for key schedule if t_set(f,l) above is*/
|
||||
t_set(l,s)[i] = w; /* not of the required form */
|
||||
#endif
|
||||
#if defined( LS4_SET )
|
||||
t_set(l,s)[0][i] = w;
|
||||
t_set(l,s)[1][i] = upr(w,1);
|
||||
t_set(l,s)[2][i] = upr(w,2);
|
||||
t_set(l,s)[3][i] = upr(w,3);
|
||||
#endif
|
||||
|
||||
b = gf_inv(inv_affine((uint8_t)i));
|
||||
w = bytes2word(fe(b), f9(b), fd(b), fb(b));
|
||||
|
||||
#if defined( IM1_SET ) /* tables for the inverse mix column operation */
|
||||
t_set(i,m)[b] = w;
|
||||
#endif
|
||||
#if defined( IM4_SET )
|
||||
t_set(i,m)[0][b] = w;
|
||||
t_set(i,m)[1][b] = upr(w,1);
|
||||
t_set(i,m)[2][b] = upr(w,2);
|
||||
t_set(i,m)[3][b] = upr(w,3);
|
||||
#endif
|
||||
|
||||
#if defined( ISB_SET )
|
||||
t_set(i,box)[i] = b;
|
||||
#endif
|
||||
#if defined( IT1_SET ) /* tables for a normal decryption round */
|
||||
t_set(i,n)[i] = w;
|
||||
#endif
|
||||
#if defined( IT4_SET )
|
||||
t_set(i,n)[0][i] = w;
|
||||
t_set(i,n)[1][i] = upr(w,1);
|
||||
t_set(i,n)[2][i] = upr(w,2);
|
||||
t_set(i,n)[3][i] = upr(w,3);
|
||||
#endif
|
||||
w = bytes2word(b, 0, 0, 0);
|
||||
#if defined( IL1_SET ) /* tables for last decryption round */
|
||||
t_set(i,l)[i] = w;
|
||||
#endif
|
||||
#if defined( IL4_SET )
|
||||
t_set(i,l)[0][i] = w;
|
||||
t_set(i,l)[1][i] = upr(w,1);
|
||||
t_set(i,l)[2][i] = upr(w,2);
|
||||
t_set(i,l)[3][i] = upr(w,3);
|
||||
#endif
|
||||
}
|
||||
init = 1;
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
/*
|
||||
Automatic code initialisation (suggested by by Henrik S. Gaßmann)
|
||||
based on code provided by Joe Lowe and placed in the public domain at:
|
||||
http://stackoverflow.com/questions/1113409/attribute-constructor-equivalent-in-vc
|
||||
*/
|
||||
|
||||
#ifdef _MSC_VER
|
||||
|
||||
#pragma section(".CRT$XCU", read)
|
||||
|
||||
__declspec(allocate(".CRT$XCU")) void (__cdecl *aes_startup)(void) = aes_init;
|
||||
|
||||
#elif defined(__GNUC__)
|
||||
|
||||
static void aes_startup(void) __attribute__((constructor));
|
||||
|
||||
static void aes_startup(void)
|
||||
{
|
||||
aes_init();
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#pragma message( "dynamic tables must be initialised manually on your system" )
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
173
crypto/src/main/jni/final_key/aes/aestab.h
Normal file
173
crypto/src/main/jni/final_key/aes/aestab.h
Normal file
@@ -0,0 +1,173 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2013, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation.
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its operation, including, but not limited to, correctness
|
||||
and fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
|
||||
This file contains the code for declaring the tables needed to implement
|
||||
AES. The file aesopt.h is assumed to be included before this header file.
|
||||
If there are no global variables, the definitions here can be used to put
|
||||
the AES tables in a structure so that a pointer can then be added to the
|
||||
AES context to pass them to the AES routines that need them. If this
|
||||
facility is used, the calling program has to ensure that this pointer is
|
||||
managed appropriately. In particular, the value of the t_dec(in,it) item
|
||||
in the table structure must be set to zero in order to ensure that the
|
||||
tables are initialised. In practice the three code sequences in aeskey.c
|
||||
that control the calls to aes_init() and the aes_init() routine itself will
|
||||
have to be changed for a specific implementation. If global variables are
|
||||
available it will generally be preferable to use them with the precomputed
|
||||
STATIC_TABLES option that uses static global tables.
|
||||
|
||||
The following defines can be used to control the way the tables
|
||||
are defined, initialised and used in embedded environments that
|
||||
require special features for these purposes
|
||||
|
||||
the 't_dec' construction is used to declare fixed table arrays
|
||||
the 't_set' construction is used to set fixed table values
|
||||
the 't_use' construction is used to access fixed table values
|
||||
|
||||
256 byte tables:
|
||||
|
||||
t_xxx(s,box) => forward S box
|
||||
t_xxx(i,box) => inverse S box
|
||||
|
||||
256 32-bit word OR 4 x 256 32-bit word tables:
|
||||
|
||||
t_xxx(f,n) => forward normal round
|
||||
t_xxx(f,l) => forward last round
|
||||
t_xxx(i,n) => inverse normal round
|
||||
t_xxx(i,l) => inverse last round
|
||||
t_xxx(l,s) => key schedule table
|
||||
t_xxx(i,m) => key schedule table
|
||||
|
||||
Other variables and tables:
|
||||
|
||||
t_xxx(r,c) => the rcon table
|
||||
*/
|
||||
|
||||
#if !defined( _AESTAB_H )
|
||||
#define _AESTAB_H
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define t_dec(m,n) t_##m##n
|
||||
#define t_set(m,n) t_##m##n
|
||||
#define t_use(m,n) t_##m##n
|
||||
|
||||
#if defined(STATIC_TABLES)
|
||||
# if !defined( __GNUC__ ) && (defined( __MSDOS__ ) || defined( __WIN16__ ))
|
||||
/* make tables far data to avoid using too much DGROUP space (PG) */
|
||||
# define CONST const far
|
||||
# else
|
||||
# define CONST const
|
||||
# endif
|
||||
#else
|
||||
# define CONST
|
||||
#endif
|
||||
|
||||
#if defined(DO_TABLES)
|
||||
# define EXTERN
|
||||
#else
|
||||
# define EXTERN extern
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER) && defined(TABLE_ALIGN)
|
||||
#define ALIGN __declspec(align(TABLE_ALIGN))
|
||||
#else
|
||||
#define ALIGN
|
||||
#endif
|
||||
|
||||
#if defined( __WATCOMC__ ) && ( __WATCOMC__ >= 1100 )
|
||||
# define XP_DIR __cdecl
|
||||
#else
|
||||
# define XP_DIR
|
||||
#endif
|
||||
|
||||
#if defined(DO_TABLES) && defined(STATIC_TABLES)
|
||||
#define d_1(t,n,b,e) EXTERN ALIGN CONST XP_DIR t n[256] = b(e)
|
||||
#define d_4(t,n,b,e,f,g,h) EXTERN ALIGN CONST XP_DIR t n[4][256] = { b(e), b(f), b(g), b(h) }
|
||||
EXTERN ALIGN CONST uint32_t t_dec(r,c)[RC_LENGTH] = rc_data(w0);
|
||||
#else
|
||||
#define d_1(t,n,b,e) EXTERN ALIGN CONST XP_DIR t n[256]
|
||||
#define d_4(t,n,b,e,f,g,h) EXTERN ALIGN CONST XP_DIR t n[4][256]
|
||||
EXTERN ALIGN CONST uint32_t t_dec(r,c)[RC_LENGTH];
|
||||
#endif
|
||||
|
||||
#if defined( SBX_SET )
|
||||
d_1(uint8_t, t_dec(s,box), sb_data, h0);
|
||||
#endif
|
||||
#if defined( ISB_SET )
|
||||
d_1(uint8_t, t_dec(i,box), isb_data, h0);
|
||||
#endif
|
||||
|
||||
#if defined( FT1_SET )
|
||||
d_1(uint32_t, t_dec(f,n), sb_data, u0);
|
||||
#endif
|
||||
#if defined( FT4_SET )
|
||||
d_4(uint32_t, t_dec(f,n), sb_data, u0, u1, u2, u3);
|
||||
#endif
|
||||
|
||||
#if defined( FL1_SET )
|
||||
d_1(uint32_t, t_dec(f,l), sb_data, w0);
|
||||
#endif
|
||||
#if defined( FL4_SET )
|
||||
d_4(uint32_t, t_dec(f,l), sb_data, w0, w1, w2, w3);
|
||||
#endif
|
||||
|
||||
#if defined( IT1_SET )
|
||||
d_1(uint32_t, t_dec(i,n), isb_data, v0);
|
||||
#endif
|
||||
#if defined( IT4_SET )
|
||||
d_4(uint32_t, t_dec(i,n), isb_data, v0, v1, v2, v3);
|
||||
#endif
|
||||
|
||||
#if defined( IL1_SET )
|
||||
d_1(uint32_t, t_dec(i,l), isb_data, w0);
|
||||
#endif
|
||||
#if defined( IL4_SET )
|
||||
d_4(uint32_t, t_dec(i,l), isb_data, w0, w1, w2, w3);
|
||||
#endif
|
||||
|
||||
#if defined( LS1_SET )
|
||||
#if defined( FL1_SET )
|
||||
#undef LS1_SET
|
||||
#else
|
||||
d_1(uint32_t, t_dec(l,s), sb_data, w0);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined( LS4_SET )
|
||||
#if defined( FL4_SET )
|
||||
#undef LS4_SET
|
||||
#else
|
||||
d_4(uint32_t, t_dec(l,s), sb_data, w0, w1, w2, w3);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined( IM1_SET )
|
||||
d_1(uint32_t, t_dec(i,m), mm_data, v0);
|
||||
#endif
|
||||
#if defined( IM4_SET )
|
||||
d_4(uint32_t, t_dec(i,m), mm_data, v0, v1, v2, v3);
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
437
crypto/src/main/jni/final_key/aes/aesxam.c
Normal file
437
crypto/src/main/jni/final_key/aes/aesxam.c
Normal file
@@ -0,0 +1,437 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2013, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation.
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its operation, including, but not limited to, correctness
|
||||
and fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 25/09/2018
|
||||
*/
|
||||
|
||||
// An example of the use of AES (Rijndael) for file encryption. This code
|
||||
// implements AES in CBC mode with ciphertext stealing when the file length
|
||||
// is greater than one block (16 bytes). This code is an example of how to
|
||||
// use AES and is not intended for real use since it does not provide any
|
||||
// file integrity checking.
|
||||
//
|
||||
// The Command line is:
|
||||
//
|
||||
// aesxam input_file_name output_file_name [D|E] hexadecimalkey
|
||||
//
|
||||
// where E gives encryption and D decryption of the input file into the
|
||||
// output file using the given hexadecimal key string. The later is a
|
||||
// hexadecimal sequence of 32, 48 or 64 digits. Examples to encrypt or
|
||||
// decrypt aes.c into aes.enc are:
|
||||
//
|
||||
// aesxam file.c file.enc E 0123456789abcdeffedcba9876543210
|
||||
//
|
||||
// aesxam file.enc file2.c D 0123456789abcdeffedcba9876543210
|
||||
//
|
||||
// which should return a file 'file2.c' identical to 'file.c'
|
||||
//
|
||||
// CIPHERTEXT STEALING
|
||||
//
|
||||
// Ciphertext stealing modifies the encryption of the last two CBC
|
||||
// blocks. It can be applied invariably to the last two plaintext
|
||||
// blocks or only applied when the last block is a partial one. In
|
||||
// this code it is only applied if there is a partial block. For
|
||||
// a plaintext consisting of N blocks, with the last block possibly
|
||||
// a partial one, ciphertext stealing works as shown below (note the
|
||||
// reversal of the last two ciphertext blocks). During decryption
|
||||
// the part of the C:N-1 block that is not transmitted (X) can be
|
||||
// obtained from the decryption of the penultimate ciphertext block
|
||||
// since the bytes in X are xored with the zero padding appended to
|
||||
// the last plaintext block.
|
||||
//
|
||||
// This is a picture of the processing of the last
|
||||
// plaintext blocks during encryption:
|
||||
//
|
||||
// +---------+ +---------+ +---------+ +-------+-+
|
||||
// | P:N-4 | | P:N-3 | | P:N-2 | | P:N-1 |0|
|
||||
// +---------+ +---------+ +---------+ +-------+-+
|
||||
// | | | |
|
||||
// v v v v
|
||||
// +----->x +----->x +----->x +----->x x = xor
|
||||
// | | | | | | | |
|
||||
// | v | v | v | v
|
||||
// | +---+ | +---+ | +---+ | +---+
|
||||
// | | E | | | E | | | E | | | E |
|
||||
// | +---+ | +---+ | +---+ | +---+
|
||||
// | | | | | | | |
|
||||
// | | | | | v | +---+
|
||||
// | | | | | +-------+-+ | |
|
||||
// | | | | | | C:N-1 |X| | |
|
||||
// | | | | | +-------+-+ ^ |
|
||||
// | | | | | || | |
|
||||
// | | | | | |+------+ |
|
||||
// | | | | | +----------|--+
|
||||
// | | | | | | |
|
||||
// | | | | | +---------+ |
|
||||
// | | | | | | |
|
||||
// | v | v | v v
|
||||
// | +---------+ | +---------+ | +---------+ +-------+
|
||||
// -+ | C:N-4 |-+ | C:N-3 |-+ | C:N-2 | | C:N-1 |
|
||||
// +---------+ +---------+ +---------+ +-------+
|
||||
//
|
||||
// And this is a picture of the processing of the last
|
||||
// ciphertext blocks during decryption:
|
||||
//
|
||||
// +---------+ +---------+ +---------+ +-------+
|
||||
// -+ | C:N-4 |-+ | C:N-3 |-+ | C:N-2 | | C:N-1 |
|
||||
// | +---------+ | +---------+ | +---------+ +-------+
|
||||
// | | | | | | |
|
||||
// | v | v | v +--------|----+
|
||||
// | +---+ | +---+ | +---+ | +--<--+ |
|
||||
// | | D | | | D | | | D | | | | |
|
||||
// | +---+ | +---+ | +---+ | | v v
|
||||
// | | | | | | ^ | +-------+-+
|
||||
// | v | v | v | | | C:N-1 |X|
|
||||
// +----->x +----->x | +-------+-+ | +-------+-+
|
||||
// | | | | |X| | |
|
||||
// | | | +-------+-+ | v
|
||||
// | | | | | +---+
|
||||
// | | | | v | D |
|
||||
// | | | +------>x +---+
|
||||
// | | | | |
|
||||
// | | +----->x<-----|------+ x = xor
|
||||
// | | | +-----+
|
||||
// | | | |
|
||||
// v v v v
|
||||
// +---------+ +---------+ +---------+ +-------+
|
||||
// | P:N-4 | | P:N-3 | | P:N-2 | | P:N-1 |
|
||||
// +---------+ +---------+ +---------+ +-------+
|
||||
|
||||
#include <stdio.h>
|
||||
#include <ctype.h>
|
||||
|
||||
#include "aes.h"
|
||||
#include "rdtsc.h"
|
||||
|
||||
#if !defined( _MSC_VER )
|
||||
// substitute for MSVC fopen_s() on Unix/Linux
|
||||
int fopen_s(FILE** pFile, const char *filename, const char *mode)
|
||||
{
|
||||
char ul_name[64], *d = ul_name;
|
||||
const char *s = filename;
|
||||
FILE * fp;
|
||||
|
||||
do{
|
||||
*d++ = (char)(*s == '\\' ? '/' : *s);
|
||||
}
|
||||
while(*s++);
|
||||
|
||||
*pFile = fp = fopen(ul_name, mode);
|
||||
return fp == NULL;
|
||||
}
|
||||
#endif
|
||||
|
||||
#define BLOCK_LEN 16
|
||||
|
||||
#define OK 0
|
||||
#define READ_ERROR -7
|
||||
#define WRITE_ERROR -8
|
||||
|
||||
// A Pseudo Random Number Generator (PRNG) used for the
|
||||
// Initialisation Vector. The PRNG is George Marsaglia's
|
||||
// Multiply-With-Carry (MWC) PRNG that concatenates two
|
||||
// 16-bit MWC generators:
|
||||
// x(n)=36969 * x(n-1) + carry mod 2^16
|
||||
// y(n)=18000 * y(n-1) + carry mod 2^16
|
||||
// to produce a combined PRNG with a period of about 2^60.
|
||||
// The Pentium cycle counter is used to initialise it. This
|
||||
// is crude but the IV does not really need to be secret.
|
||||
|
||||
#define RAND(a,b) (((a = 36969 * (a & 65535) + (a >> 16)) << 16) + \
|
||||
(b = 18000 * (b & 65535) + (b >> 16)) )
|
||||
|
||||
void fillrand(unsigned char *buf, const int len)
|
||||
{ static unsigned long a[2], mt = 1, count = 4;
|
||||
static unsigned char r[4];
|
||||
int i;
|
||||
|
||||
if(mt) { mt = 0; *(unsigned long long*)a = read_tsc(); }
|
||||
|
||||
for(i = 0; i < len; ++i)
|
||||
{
|
||||
if(count == 4)
|
||||
{
|
||||
*(unsigned long*)r = RAND(a[0], a[1]);
|
||||
count = 0;
|
||||
}
|
||||
|
||||
buf[i] = r[count++];
|
||||
}
|
||||
}
|
||||
|
||||
int encfile(FILE *fin, FILE *fout, aes_encrypt_ctx ctx[1])
|
||||
{ unsigned char dbuf[3 * BLOCK_LEN];
|
||||
unsigned long i, len, wlen = BLOCK_LEN;
|
||||
|
||||
// When ciphertext stealing is used, we need three ciphertext blocks
|
||||
// so we use a buffer that is three times the block length. The buffer
|
||||
// pointers b1, b2 and b3 point to the buffer positions of three
|
||||
// ciphertext blocks, b3 being the most recent and b1 being the
|
||||
// oldest. We start with the IV in b1 and the block to be decrypted
|
||||
// in b2.
|
||||
|
||||
// set a random IV
|
||||
|
||||
fillrand(dbuf, BLOCK_LEN);
|
||||
|
||||
// read the first file block
|
||||
len = (unsigned long) fread((char*)dbuf + BLOCK_LEN, 1, BLOCK_LEN, fin);
|
||||
|
||||
if(len < BLOCK_LEN)
|
||||
{ // if the file length is less than one block
|
||||
|
||||
// xor the file bytes with the IV bytes
|
||||
for(i = 0; i < len; ++i)
|
||||
dbuf[i + BLOCK_LEN] ^= dbuf[i];
|
||||
|
||||
// encrypt the top 16 bytes of the buffer
|
||||
aes_encrypt(dbuf + len, dbuf + len, ctx);
|
||||
|
||||
len += BLOCK_LEN;
|
||||
// write the IV and the encrypted file bytes
|
||||
if(fwrite((char*)dbuf, 1, len, fout) != len)
|
||||
return WRITE_ERROR;
|
||||
|
||||
return OK;
|
||||
}
|
||||
else // if the file length is more 16 bytes
|
||||
{ unsigned char *b1 = dbuf, *b2 = b1 + BLOCK_LEN, *b3 = b2 + BLOCK_LEN, *bt;
|
||||
|
||||
// write the IV
|
||||
if(fwrite((char*)dbuf, 1, BLOCK_LEN, fout) != BLOCK_LEN)
|
||||
return WRITE_ERROR;
|
||||
|
||||
for( ; ; )
|
||||
{
|
||||
// read the next block to see if ciphertext stealing is needed
|
||||
len = (unsigned long)fread((char*)b3, 1, BLOCK_LEN, fin);
|
||||
|
||||
// do CBC chaining prior to encryption for current block (in b2)
|
||||
for(i = 0; i < BLOCK_LEN; ++i)
|
||||
b1[i] ^= b2[i];
|
||||
|
||||
// encrypt the block (now in b1)
|
||||
aes_encrypt(b1, b1, ctx);
|
||||
|
||||
if(len != 0 && len != BLOCK_LEN) // use ciphertext stealing
|
||||
{
|
||||
// set the length of the last block
|
||||
wlen = len;
|
||||
|
||||
// xor ciphertext into last block
|
||||
for(i = 0; i < len; ++i)
|
||||
b3[i] ^= b1[i];
|
||||
|
||||
// move 'stolen' ciphertext into last block
|
||||
for(i = len; i < BLOCK_LEN; ++i)
|
||||
b3[i] = b1[i];
|
||||
|
||||
// encrypt this block
|
||||
aes_encrypt(b3, b3, ctx);
|
||||
|
||||
// and write it as the second to last encrypted block
|
||||
if(fwrite((char*)b3, 1, BLOCK_LEN, fout) != BLOCK_LEN)
|
||||
return WRITE_ERROR;
|
||||
}
|
||||
|
||||
// write the encrypted block
|
||||
if(fwrite((char*)b1, 1, wlen, fout) != wlen)
|
||||
return WRITE_ERROR;
|
||||
|
||||
if(len != BLOCK_LEN)
|
||||
return OK;
|
||||
|
||||
// advance the buffer pointers
|
||||
bt = b3, b3 = b2, b2 = b1, b1 = bt;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int decfile(FILE *fin, FILE *fout, aes_decrypt_ctx ctx[1])
|
||||
{ unsigned char dbuf[3 * BLOCK_LEN], buf[BLOCK_LEN];
|
||||
unsigned long i, len, wlen = BLOCK_LEN;
|
||||
|
||||
// When ciphertext stealing is used, we need three ciphertext blocks
|
||||
// so we use a buffer that is three times the block length. The buffer
|
||||
// pointers b1, b2 and b3 point to the buffer positions of three
|
||||
// ciphertext blocks, b3 being the most recent and b1 being the
|
||||
// oldest. We start with the IV in b1 and the block to be decrypted
|
||||
// in b2.
|
||||
|
||||
len = (unsigned long)fread((char*)dbuf, 1, 2 * BLOCK_LEN, fin);
|
||||
|
||||
if(len < 2 * BLOCK_LEN) // the original file is less than one block in length
|
||||
{
|
||||
len -= BLOCK_LEN;
|
||||
// decrypt from position len to position len + BLOCK_LEN
|
||||
aes_decrypt(dbuf + len, dbuf + len, ctx);
|
||||
|
||||
// undo the CBC chaining
|
||||
for(i = 0; i < len; ++i)
|
||||
dbuf[i] ^= dbuf[i + BLOCK_LEN];
|
||||
|
||||
// output the decrypted bytes
|
||||
if(fwrite((char*)dbuf, 1, len, fout) != len)
|
||||
return WRITE_ERROR;
|
||||
|
||||
return OK;
|
||||
}
|
||||
else
|
||||
{ unsigned char *b1 = dbuf, *b2 = b1 + BLOCK_LEN, *b3 = b2 + BLOCK_LEN, *bt;
|
||||
|
||||
for( ; ; ) // while some ciphertext remains, prepare to decrypt block b2
|
||||
{
|
||||
// read in the next block to see if ciphertext stealing is needed
|
||||
len = fread((char*)b3, 1, BLOCK_LEN, fin);
|
||||
|
||||
// decrypt the b2 block
|
||||
aes_decrypt(b2, buf, ctx);
|
||||
|
||||
if(len == 0 || len == BLOCK_LEN) // no ciphertext stealing
|
||||
{
|
||||
// unchain CBC using the previous ciphertext block in b1
|
||||
for(i = 0; i < BLOCK_LEN; ++i)
|
||||
buf[i] ^= b1[i];
|
||||
}
|
||||
else // partial last block - use ciphertext stealing
|
||||
{
|
||||
wlen = len;
|
||||
|
||||
// produce last 'len' bytes of plaintext by xoring with
|
||||
// the lowest 'len' bytes of next block b3 - C[N-1]
|
||||
for(i = 0; i < len; ++i)
|
||||
buf[i] ^= b3[i];
|
||||
|
||||
// reconstruct the C[N-1] block in b3 by adding in the
|
||||
// last (BLOCK_LEN - len) bytes of C[N-2] in b2
|
||||
for(i = len; i < BLOCK_LEN; ++i)
|
||||
b3[i] = buf[i];
|
||||
|
||||
// decrypt the C[N-1] block in b3
|
||||
aes_decrypt(b3, b3, ctx);
|
||||
|
||||
// produce the last but one plaintext block by xoring with
|
||||
// the last but two ciphertext block
|
||||
for(i = 0; i < BLOCK_LEN; ++i)
|
||||
b3[i] ^= b1[i];
|
||||
|
||||
// write decrypted plaintext blocks
|
||||
if(fwrite((char*)b3, 1, BLOCK_LEN, fout) != BLOCK_LEN)
|
||||
return WRITE_ERROR;
|
||||
}
|
||||
|
||||
// write the decrypted plaintext block
|
||||
if(fwrite((char*)buf, 1, wlen, fout) != wlen)
|
||||
return WRITE_ERROR;
|
||||
|
||||
if(len != BLOCK_LEN)
|
||||
return OK;
|
||||
|
||||
// advance the buffer pointers
|
||||
bt = b1, b1 = b2, b2 = b3, b3 = bt;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{ FILE *fin = 0, *fout = 0;
|
||||
char *cp, ch, key[32];
|
||||
int i, by = 0, key_len, err = 0;
|
||||
|
||||
if(argc != 5 || toupper(*argv[3]) != 'D' && toupper(*argv[3]) != 'E')
|
||||
{
|
||||
printf("usage: aesxam in_filename out_filename [d/e] key_in_hex\n");
|
||||
err = -1; goto exit;
|
||||
}
|
||||
|
||||
aes_init(); // in case dynamic AES tables are being used
|
||||
|
||||
cp = argv[4]; // this is a pointer to the hexadecimal key digits
|
||||
i = 0; // this is a count for the input digits processed
|
||||
|
||||
while(i < 64 && *cp) // the maximum key length is 32 bytes and
|
||||
{ // hence at most 64 hexadecimal digits
|
||||
ch = toupper(*cp++); // process a hexadecimal digit
|
||||
if(ch >= '0' && ch <= '9')
|
||||
by = (by << 4) + ch - '0';
|
||||
else if(ch >= 'A' && ch <= 'F')
|
||||
by = (by << 4) + ch - 'A' + 10;
|
||||
else // error if not hexadecimal
|
||||
{
|
||||
printf("key must be in hexadecimal notation\n");
|
||||
err = -2; goto exit;
|
||||
}
|
||||
|
||||
// store a key byte for each pair of hexadecimal digits
|
||||
if(i++ & 1)
|
||||
key[i / 2 - 1] = by & 0xff;
|
||||
}
|
||||
|
||||
if(*cp)
|
||||
{
|
||||
printf("The key value is too long\n");
|
||||
err = -3; goto exit;
|
||||
}
|
||||
else if(i < 32 || (i & 15))
|
||||
{
|
||||
printf("The key length must be 32, 48 or 64 hexadecimal digits\n");
|
||||
err = -4; goto exit;
|
||||
}
|
||||
|
||||
key_len = i / 2;
|
||||
|
||||
if(fopen_s(&fin, argv[1], "rb")) // try to open the input file
|
||||
{
|
||||
printf("The input file: %s could not be opened\n", argv[1]);
|
||||
err = -5; goto exit;
|
||||
}
|
||||
|
||||
if(fopen_s(&fout, argv[2], "wb")) // try to open the output file
|
||||
{
|
||||
printf("The output file: %s could not be opened\n", argv[2]);
|
||||
err = -6; goto exit;
|
||||
}
|
||||
|
||||
if(toupper(*argv[3]) == 'E') // encryption in Cipher Block Chaining mode
|
||||
{ aes_encrypt_ctx ctx[1];
|
||||
|
||||
aes_encrypt_key((unsigned char*)key, key_len, ctx);
|
||||
|
||||
err = encfile(fin, fout, ctx);
|
||||
}
|
||||
else // decryption in Cipher Block Chaining mode
|
||||
{ aes_decrypt_ctx ctx[1];
|
||||
|
||||
aes_decrypt_key((unsigned char*)key, key_len, ctx);
|
||||
|
||||
err = decfile(fin, fout, ctx);
|
||||
}
|
||||
exit:
|
||||
if(err == READ_ERROR)
|
||||
printf("Error reading from input file: %s\n", argv[1]);
|
||||
|
||||
if(err == WRITE_ERROR)
|
||||
printf("Error writing to output file: %s\n", argv[2]);
|
||||
|
||||
if(fout)
|
||||
fclose(fout);
|
||||
|
||||
if(fin)
|
||||
fclose(fin);
|
||||
|
||||
return err;
|
||||
}
|
||||
144
crypto/src/main/jni/final_key/aes/brg_endian.h
Normal file
144
crypto/src/main/jni/final_key/aes/brg_endian.h
Normal file
@@ -0,0 +1,144 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2013, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation.
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its operation, including, but not limited to, correctness
|
||||
and fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 10/09/2018
|
||||
*/
|
||||
|
||||
#ifndef _BRG_ENDIAN_H
|
||||
#define _BRG_ENDIAN_H
|
||||
|
||||
#define IS_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */
|
||||
#define IS_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */
|
||||
|
||||
/* This is needed when using clang with MSVC to avoid including */
|
||||
/* endian.h and byteswap.h which are not present on Windows */
|
||||
#if defined( _MSC_VER ) && defined( __clang__ )
|
||||
# undef __GNUC__
|
||||
#endif
|
||||
|
||||
/* Include files where endian defines and byteswap functions may reside */
|
||||
#if defined( __sun )
|
||||
# include <sys/isa_defs.h>
|
||||
#elif defined( __FreeBSD__ ) || defined( __OpenBSD__ ) || defined( __NetBSD__ )
|
||||
# include <sys/endian.h>
|
||||
#elif defined( BSD ) && ( BSD >= 199103 ) || defined( __APPLE__ ) || \
|
||||
defined( __CYGWIN32__ ) || defined( __DJGPP__ ) || defined( __osf__ )
|
||||
# include <machine/endian.h>
|
||||
#elif defined( __linux__ ) || defined( __GNUC__ ) || defined( __GNU_LIBRARY__ )
|
||||
# if !defined( __MINGW32__ ) && !defined( _AIX )
|
||||
# include <endian.h>
|
||||
# if !defined( __BEOS__ )
|
||||
# include <byteswap.h>
|
||||
# endif
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* Now attempt to set the define for platform byte order using any */
|
||||
/* of the four forms SYMBOL, _SYMBOL, __SYMBOL & __SYMBOL__, ... */
|
||||
/* which seem to encompass most endian symbol definitions */
|
||||
|
||||
#if defined( __ORDER_BIG_ENDIAN__ ) && defined( __ORDER_LITTLE_ENDIAN__ )
|
||||
# if defined( __BYTE_ORDER__ ) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined( __BYTE_ORDER__ ) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# endif
|
||||
#elif defined( __ORDER_BIG_ENDIAN__ )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#elif defined( __ORDER_LITTLE_ENDIAN__ )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
#if defined( BIG_ENDIAN ) && defined( LITTLE_ENDIAN )
|
||||
# if defined( BYTE_ORDER ) && BYTE_ORDER == BIG_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined( BYTE_ORDER ) && BYTE_ORDER == LITTLE_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# endif
|
||||
#elif defined( BIG_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#elif defined( LITTLE_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
#if defined( _BIG_ENDIAN ) && defined( _LITTLE_ENDIAN )
|
||||
# if defined( _BYTE_ORDER ) && _BYTE_ORDER == _BIG_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined( _BYTE_ORDER ) && _BYTE_ORDER == _LITTLE_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# endif
|
||||
#elif defined( _BIG_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#elif defined( _LITTLE_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
#if defined( __BIG_ENDIAN ) && defined( __LITTLE_ENDIAN )
|
||||
# if defined( __BYTE_ORDER ) && __BYTE_ORDER == __BIG_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined( __BYTE_ORDER ) && __BYTE_ORDER == __LITTLE_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# endif
|
||||
#elif defined( __BIG_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#elif defined( __LITTLE_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
#if defined( __BIG_ENDIAN__ ) && defined( __LITTLE_ENDIAN__ )
|
||||
# if defined( __BYTE_ORDER__ ) && __BYTE_ORDER__ == __BIG_ENDIAN__
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined( __BYTE_ORDER__ ) && __BYTE_ORDER__ == __LITTLE_ENDIAN__
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# endif
|
||||
#elif defined( __BIG_ENDIAN__ )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#elif defined( __LITTLE_ENDIAN__ )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
/* if the platform byte order could not be determined, then try to */
|
||||
/* set this define using common machine defines */
|
||||
#if !defined(PLATFORM_BYTE_ORDER)
|
||||
|
||||
#if defined( __alpha__ ) || defined( __alpha ) || defined( i386 ) || \
|
||||
defined( __i386__ ) || defined( _M_I86 ) || defined( _M_IX86 ) || \
|
||||
defined( __OS2__ ) || defined( sun386 ) || defined( __TURBOC__ ) || \
|
||||
defined( vax ) || defined( vms ) || defined( VMS ) || \
|
||||
defined( __VMS ) || defined( _M_X64 )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
|
||||
#elif defined( AMIGA ) || defined( applec ) || defined( __AS400__ ) || \
|
||||
defined( _CRAY ) || defined( __hppa ) || defined( __hp9000 ) || \
|
||||
defined( ibm370 ) || defined( mc68000 ) || defined( m68k ) || \
|
||||
defined( __MRC__ ) || defined( __MVS__ ) || defined( __MWERKS__ ) || \
|
||||
defined( sparc ) || defined( __sparc) || defined( SYMANTEC_C ) || \
|
||||
defined( __VOS__ ) || defined( __TIGCC__ ) || defined( __TANDEM ) || \
|
||||
defined( THINK_C ) || defined( __VMCMS__ ) || defined( _AIX )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
|
||||
#elif 0 /* **** EDIT HERE IF NECESSARY **** */
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#elif 0 /* **** EDIT HERE IF NECESSARY **** */
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#else
|
||||
# error Please edit lines 126 or 128 in brg_endian.h to set the platform byte order
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
217
crypto/src/main/jni/final_key/aes/brg_types.h
Normal file
217
crypto/src/main/jni/final_key/aes/brg_types.h
Normal file
@@ -0,0 +1,217 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2013, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation.
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its operation, including, but not limited to, correctness
|
||||
and fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 30/09/2017
|
||||
*/
|
||||
|
||||
#ifndef _BRG_TYPES_H
|
||||
#define _BRG_TYPES_H
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include <limits.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#if defined( _MSC_VER ) && ( _MSC_VER >= 1300 )
|
||||
# include <stddef.h>
|
||||
# define ptrint_t intptr_t
|
||||
#elif defined( __ECOS__ )
|
||||
# define intptr_t unsigned int
|
||||
# define ptrint_t intptr_t
|
||||
#elif defined( __GNUC__ ) && ( __GNUC__ >= 3 ) && !(defined( __HAIKU__ ) || defined( __VxWorks__ ))
|
||||
# define ptrint_t intptr_t
|
||||
#else
|
||||
# define ptrint_t int
|
||||
#endif
|
||||
|
||||
/* define unsigned 8-bit type if not available in stdint.h */
|
||||
#if !defined(UINT8_MAX)
|
||||
typedef unsigned char uint8_t;
|
||||
#endif
|
||||
|
||||
/* define unsigned 16-bit type if not available in stdint.h */
|
||||
#if !defined(UINT16_MAX)
|
||||
typedef unsigned short uint16_t;
|
||||
#endif
|
||||
|
||||
/* define unsigned 32-bit type if not available in stdint.h and define the
|
||||
macro li_32(h) which converts a sequence of eight hexadecimal characters
|
||||
into a 32 bit constant
|
||||
*/
|
||||
#if defined(UINT_MAX) && UINT_MAX == 4294967295u
|
||||
# define li_32(h) 0x##h##u
|
||||
# if !defined(UINT32_MAX)
|
||||
typedef unsigned int uint32_t;
|
||||
# endif
|
||||
#elif defined(ULONG_MAX) && ULONG_MAX == 4294967295u
|
||||
# define li_32(h) 0x##h##ul
|
||||
# if !defined(UINT32_MAX)
|
||||
typedef unsigned long uint32_t;
|
||||
# endif
|
||||
#elif defined( _CRAY )
|
||||
# error This code needs 32-bit data types, which Cray machines do not provide
|
||||
#else
|
||||
# error Please define uint32_t as a 32-bit unsigned integer type in brg_types.h
|
||||
#endif
|
||||
|
||||
/* define unsigned 64-bit type if not available in stdint.h and define the
|
||||
macro li_64(h) which converts a sequence of eight hexadecimal characters
|
||||
into a 64 bit constant
|
||||
*/
|
||||
#if defined( __BORLANDC__ ) && !defined( __MSDOS__ )
|
||||
# define li_64(h) 0x##h##ui64
|
||||
# if !defined(UINT64_MAX)
|
||||
typedef unsigned __int64 uint64_t;
|
||||
# endif
|
||||
#elif defined( _MSC_VER ) && ( _MSC_VER < 1300 ) /* 1300 == VC++ 7.0 */
|
||||
# define li_64(h) 0x##h##ui64
|
||||
# if !defined(UINT64_MAX)
|
||||
typedef unsigned __int64 uint64_t;
|
||||
# endif
|
||||
#elif defined( __sun ) && defined( ULONG_MAX ) && ULONG_MAX == 0xfffffffful
|
||||
# define li_64(h) 0x##h##ull
|
||||
# if !defined(UINT64_MAX)
|
||||
typedef unsigned long long uint64_t;
|
||||
# endif
|
||||
#elif defined( __MVS__ )
|
||||
# define li_64(h) 0x##h##ull
|
||||
# if !defined(UINT64_MAX)
|
||||
typedef unsigned long long uint64_t;
|
||||
# endif
|
||||
#elif defined( UINT_MAX ) && UINT_MAX > 4294967295u
|
||||
# if UINT_MAX == 18446744073709551615u
|
||||
# define li_64(h) 0x##h##u
|
||||
# if !defined(UINT64_MAX)
|
||||
typedef unsigned int uint64_t;
|
||||
# endif
|
||||
# endif
|
||||
#elif defined( ULONG_MAX ) && ULONG_MAX > 4294967295u
|
||||
# if ULONG_MAX == 18446744073709551615ul
|
||||
# define li_64(h) 0x##h##ul
|
||||
# if !defined(UINT64_MAX) && !defined(_UINT64_T)
|
||||
typedef unsigned long uint64_t;
|
||||
# endif
|
||||
# endif
|
||||
#elif defined( ULLONG_MAX ) && ULLONG_MAX > 4294967295u
|
||||
# if ULLONG_MAX == 18446744073709551615ull
|
||||
# define li_64(h) 0x##h##ull
|
||||
# if !defined(UINT64_MAX) && !defined( __HAIKU__ )
|
||||
typedef unsigned long long uint64_t;
|
||||
# endif
|
||||
# endif
|
||||
#elif defined( ULONG_LONG_MAX ) && ULONG_LONG_MAX > 4294967295u
|
||||
# if ULONG_LONG_MAX == 18446744073709551615ull
|
||||
# define li_64(h) 0x##h##ull
|
||||
# if !defined(UINT64_MAX)
|
||||
typedef unsigned long long uint64_t;
|
||||
# endif
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if !defined( li_64 )
|
||||
# if defined( NEED_UINT_64T )
|
||||
# error Please define uint64_t as an unsigned 64 bit type in brg_types.h
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef RETURN_VALUES
|
||||
# define RETURN_VALUES
|
||||
# if defined( DLL_EXPORT )
|
||||
# if defined( _MSC_VER ) || defined ( __INTEL_COMPILER )
|
||||
# define VOID_RETURN __declspec( dllexport ) void __stdcall
|
||||
# define INT_RETURN __declspec( dllexport ) int __stdcall
|
||||
# elif defined( __GNUC__ )
|
||||
# define VOID_RETURN __declspec( __dllexport__ ) void
|
||||
# define INT_RETURN __declspec( __dllexport__ ) int
|
||||
# else
|
||||
# error Use of the DLL is only available on the Microsoft, Intel and GCC compilers
|
||||
# endif
|
||||
# elif defined( DLL_IMPORT )
|
||||
# if defined( _MSC_VER ) || defined ( __INTEL_COMPILER )
|
||||
# define VOID_RETURN __declspec( dllimport ) void __stdcall
|
||||
# define INT_RETURN __declspec( dllimport ) int __stdcall
|
||||
# elif defined( __GNUC__ )
|
||||
# define VOID_RETURN __declspec( __dllimport__ ) void
|
||||
# define INT_RETURN __declspec( __dllimport__ ) int
|
||||
# else
|
||||
# error Use of the DLL is only available on the Microsoft, Intel and GCC compilers
|
||||
# endif
|
||||
# elif defined( __WATCOMC__ )
|
||||
# define VOID_RETURN void __cdecl
|
||||
# define INT_RETURN int __cdecl
|
||||
# else
|
||||
# define VOID_RETURN void
|
||||
# define INT_RETURN int
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* These defines are used to detect and set the memory alignment of pointers.
|
||||
Note that offsets are in bytes.
|
||||
|
||||
ALIGN_OFFSET(x,n) return the positive or zero offset of
|
||||
the memory addressed by the pointer 'x'
|
||||
from an address that is aligned on an
|
||||
'n' byte boundary ('n' is a power of 2)
|
||||
|
||||
ALIGN_FLOOR(x,n) return a pointer that points to memory
|
||||
that is aligned on an 'n' byte boundary
|
||||
and is not higher than the memory address
|
||||
pointed to by 'x' ('n' is a power of 2)
|
||||
|
||||
ALIGN_CEIL(x,n) return a pointer that points to memory
|
||||
that is aligned on an 'n' byte boundary
|
||||
and is not lower than the memory address
|
||||
pointed to by 'x' ('n' is a power of 2)
|
||||
*/
|
||||
|
||||
#define ALIGN_OFFSET(x,n) (((ptrint_t)(x)) & ((n) - 1))
|
||||
#define ALIGN_FLOOR(x,n) ((uint8_t*)(x) - ( ((ptrint_t)(x)) & ((n) - 1)))
|
||||
#define ALIGN_CEIL(x,n) ((uint8_t*)(x) + (-((ptrint_t)(x)) & ((n) - 1)))
|
||||
|
||||
/* These defines are used to declare buffers in a way that allows
|
||||
faster operations on longer variables to be used. In all these
|
||||
defines 'size' must be a power of 2 and >= 8. NOTE that the
|
||||
buffer size is in bytes but the type length is in bits
|
||||
|
||||
UNIT_TYPEDEF(x,size) declares a variable 'x' of length
|
||||
'size' bits
|
||||
|
||||
BUFR_TYPEDEF(x,size,bsize) declares a buffer 'x' of length 'bsize'
|
||||
bytes defined as an array of variables
|
||||
each of 'size' bits (bsize must be a
|
||||
multiple of size / 8)
|
||||
|
||||
UNIT_CAST(x,size) casts a variable to a type of
|
||||
length 'size' bits
|
||||
|
||||
UPTR_CAST(x,size) casts a pointer to a pointer to a
|
||||
variable of length 'size' bits
|
||||
*/
|
||||
|
||||
#define UI_TYPE(size) uint##size##_t
|
||||
#define UNIT_TYPEDEF(x,size) typedef UI_TYPE(size) x
|
||||
#define BUFR_TYPEDEF(x,size,bsize) typedef UI_TYPE(size) x[bsize / (size >> 3)]
|
||||
#define UNIT_CAST(x,size) ((UI_TYPE(size) )(x))
|
||||
#define UPTR_CAST(x,size) ((UI_TYPE(size)*)(x))
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
355
crypto/src/main/jni/final_key/aes/rfc3686.c
Normal file
355
crypto/src/main/jni/final_key/aes/rfc3686.c
Normal file
@@ -0,0 +1,355 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2013, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation.
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its operation, including, but not limited to, correctness
|
||||
and fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/11/2013
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include "aes.h"
|
||||
|
||||
typedef struct
|
||||
{ unsigned int k_len;
|
||||
unsigned int m_len;
|
||||
unsigned char key[32];
|
||||
unsigned char iv[8];
|
||||
unsigned char nonce[8];
|
||||
unsigned char p_txt[36];
|
||||
unsigned char c_str[48];
|
||||
unsigned char k_str[48];
|
||||
unsigned char c_txt[36];
|
||||
} test_str;
|
||||
|
||||
test_str tests[] =
|
||||
{
|
||||
{ 16, 16, /* Vector 1 */
|
||||
{ 0xae, 0x68, 0x52, 0xf8, 0x12, 0x10, 0x67, 0xcc,
|
||||
0x4b, 0xf7, 0xa5, 0x76, 0x55, 0x77, 0xf3, 0x9e
|
||||
},
|
||||
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
|
||||
},
|
||||
{ 0x00, 0x00, 0x00, 0x30
|
||||
},
|
||||
/* "Single block msg" */
|
||||
{ 0x53, 0x69, 0x6e, 0x67, 0x6c, 0x65, 0x20, 0x62,
|
||||
0x6c, 0x6f, 0x63, 0x6b, 0x20, 0x6d, 0x73, 0x67
|
||||
},
|
||||
{ 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01
|
||||
},
|
||||
{ 0xb7, 0x60, 0x33, 0x28, 0xdb, 0xc2, 0x93, 0x1b,
|
||||
0x41, 0x0e, 0x16, 0xc8, 0x06, 0x7e, 0x62, 0xdf
|
||||
},
|
||||
{ 0xe4, 0x09, 0x5d, 0x4f, 0xb7, 0xa7, 0xb3, 0x79,
|
||||
0x2d, 0x61, 0x75, 0xa3, 0x26, 0x13, 0x11, 0xb8
|
||||
}
|
||||
},
|
||||
{ 16, 32, /* Vector 2 */
|
||||
{ 0x7e, 0x24, 0x06, 0x78, 0x17, 0xfa, 0xe0, 0xd7,
|
||||
0x43, 0xd6, 0xce, 0x1f, 0x32, 0x53, 0x91, 0x63
|
||||
},
|
||||
{ 0xc0, 0x54, 0x3b, 0x59, 0xda, 0x48, 0xd9, 0x0b
|
||||
},
|
||||
{ 0x00, 0x6c, 0xb6, 0xdb
|
||||
},
|
||||
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
||||
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
||||
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
||||
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
|
||||
},
|
||||
{ 0x00, 0x6c, 0xb6, 0xdb, 0xc0, 0x54, 0x3b, 0x59,
|
||||
0xda, 0x48, 0xd9, 0x0b, 0x00, 0x00, 0x00, 0x01,
|
||||
0x00, 0x6c, 0xb6, 0xdb, 0xc0, 0x54, 0x3b, 0x59,
|
||||
0xda, 0x48, 0xd9, 0x0b, 0x00, 0x00, 0x00, 0x02
|
||||
},
|
||||
{ 0x51, 0x05, 0xa3, 0x05, 0x12, 0x8f, 0x74, 0xde,
|
||||
0x71, 0x04, 0x4b, 0xe5, 0x82, 0xd7, 0xdd, 0x87,
|
||||
0xfb, 0x3f, 0x0c, 0xef, 0x52, 0xcf, 0x41, 0xdf,
|
||||
0xe4, 0xff, 0x2a, 0xc4, 0x8d, 0x5c, 0xa0, 0x37
|
||||
},
|
||||
{ 0x51, 0x04, 0xa1, 0x06, 0x16, 0x8a, 0x72, 0xd9,
|
||||
0x79, 0x0d, 0x41, 0xee, 0x8e, 0xda, 0xd3, 0x88,
|
||||
0xeb, 0x2e, 0x1e, 0xfc, 0x46, 0xda, 0x57, 0xc8,
|
||||
0xfc, 0xe6, 0x30, 0xdf, 0x91, 0x41, 0xbe, 0x28
|
||||
}
|
||||
},
|
||||
{ 16, 36, /* Vector 3 */
|
||||
{ 0x76, 0x91, 0xbe, 0x03, 0x5e, 0x50, 0x20, 0xa8,
|
||||
0xac, 0x6e, 0x61, 0x85, 0x29, 0xf9, 0xa0, 0xdc
|
||||
},
|
||||
{ 0x27, 0x77, 0x7f, 0x3f, 0x4a, 0x17, 0x86, 0xf0
|
||||
},
|
||||
{ 0x00, 0xe0, 0x01, 0x7b
|
||||
},
|
||||
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
||||
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
||||
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
||||
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
|
||||
0x20, 0x21, 0x22, 0x23
|
||||
},
|
||||
{ 0x00, 0xe0, 0x01, 0x7b, 0x27, 0x77, 0x7f, 0x3f,
|
||||
0x4a, 0x17, 0x86, 0xf0, 0x00, 0x00, 0x00, 0x01,
|
||||
0x00, 0xe0, 0x01, 0x7b, 0x27, 0x77, 0x7f, 0x3f,
|
||||
0x4a, 0x17, 0x86, 0xf0, 0x00, 0x00, 0x00, 0x02,
|
||||
0x00, 0xe0, 0x01, 0x7b, 0x27, 0x77, 0x7f, 0x3f,
|
||||
0x4a, 0x17, 0x86, 0xf0, 0x00, 0x00, 0x00, 0x03
|
||||
},
|
||||
{ 0xc1, 0xce, 0x4a, 0xab, 0x9b, 0x2a, 0xfb, 0xde,
|
||||
0xc7, 0x4f, 0x58, 0xe2, 0xe3, 0xd6, 0x7c, 0xd8,
|
||||
0x55, 0x51, 0xb6, 0x38, 0xca, 0x78, 0x6e, 0x21,
|
||||
0xcd, 0x83, 0x46, 0xf1, 0xb2, 0xee, 0x0e, 0x4c,
|
||||
0x05, 0x93, 0x25, 0x0c, 0x17, 0x55, 0x36, 0x00,
|
||||
0xa6, 0x3d, 0xfe, 0xcf, 0x56, 0x23, 0x87, 0xe9
|
||||
},
|
||||
{ 0xc1, 0xcf, 0x48, 0xa8, 0x9f, 0x2f, 0xfd, 0xd9,
|
||||
0xcf, 0x46, 0x52, 0xe9, 0xef, 0xdb, 0x72, 0xd7,
|
||||
0x45, 0x40, 0xa4, 0x2b, 0xde, 0x6d, 0x78, 0x36,
|
||||
0xd5, 0x9a, 0x5c, 0xea, 0xae, 0xf3, 0x10, 0x53,
|
||||
0x25, 0xb2, 0x07, 0x2f
|
||||
}
|
||||
},
|
||||
{ 24, 16, /* Vector 4 */
|
||||
{ 0x16, 0xaf, 0x5b, 0x14, 0x5f, 0xc9, 0xf5, 0x79,
|
||||
0xc1, 0x75, 0xf9, 0x3e, 0x3b, 0xfb, 0x0e, 0xed,
|
||||
0x86, 0x3d, 0x06, 0xcc, 0xfd, 0xb7, 0x85, 0x15
|
||||
},
|
||||
{ 0x36, 0x73, 0x3c, 0x14, 0x7d, 0x6d, 0x93, 0xcb
|
||||
},
|
||||
{ 0x00, 0x00, 0x00, 0x48
|
||||
},
|
||||
/* "Single block msg" */
|
||||
{ 0x53, 0x69, 0x6e, 0x67, 0x6c, 0x65, 0x20, 0x62,
|
||||
0x6c, 0x6f, 0x63, 0x6b, 0x20, 0x6d, 0x73, 0x67
|
||||
},
|
||||
{ 0x00, 0x00, 0x00, 0x48, 0x36, 0x73, 0x3c, 0x14,
|
||||
0x7d, 0x6d, 0x93, 0xcb, 0x00, 0x00, 0x00, 0x01
|
||||
},
|
||||
{ 0x18, 0x3c, 0x56, 0x28, 0x8e, 0x3c, 0xe9, 0xaa,
|
||||
0x22, 0x16, 0x56, 0xcb, 0x23, 0xa6, 0x9a, 0x4f
|
||||
},
|
||||
{ 0x4b, 0x55, 0x38, 0x4f, 0xe2, 0x59, 0xc9, 0xc8,
|
||||
0x4e, 0x79, 0x35, 0xa0, 0x03, 0xcb, 0xe9, 0x28
|
||||
}
|
||||
},
|
||||
{ 24, 32, /* Vector 5 */
|
||||
{ 0x7c, 0x5c, 0xb2, 0x40, 0x1b, 0x3d, 0xc3, 0x3c,
|
||||
0x19, 0xe7, 0x34, 0x08, 0x19, 0xe0, 0xf6, 0x9c,
|
||||
0x67, 0x8c, 0x3d, 0xb8, 0xe6, 0xf6, 0xa9, 0x1a
|
||||
},
|
||||
{ 0x02, 0x0c, 0x6e, 0xad, 0xc2, 0xcb, 0x50, 0x0d
|
||||
},
|
||||
{ 0x00, 0x96, 0xb0, 0x3b
|
||||
},
|
||||
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
||||
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
||||
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
||||
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
|
||||
},
|
||||
{ 0x00, 0x96, 0xb0, 0x3b, 0x02, 0x0c, 0x6e, 0xad,
|
||||
0xc2, 0xcb, 0x50, 0x0d, 0x00, 0x00, 0x00, 0x01,
|
||||
0x00, 0x96, 0xb0, 0x3b, 0x02, 0x0c, 0x6e, 0xad,
|
||||
0xc2, 0xcb, 0x50, 0x0d, 0x00, 0x00, 0x00, 0x02
|
||||
},
|
||||
{ 0x45, 0x33, 0x41, 0xff, 0x64, 0x9e, 0x25, 0x35,
|
||||
0x76, 0xd6, 0xa0, 0xf1, 0x7d, 0x3c, 0xc3, 0x90,
|
||||
0x94, 0x81, 0x62, 0x0f, 0x4e, 0xc1, 0xb1, 0x8b,
|
||||
0xe4, 0x06, 0xfa, 0xe4, 0x5e, 0xe9, 0xe5, 0x1f
|
||||
},
|
||||
{ 0x45, 0x32, 0x43, 0xfc, 0x60, 0x9b, 0x23, 0x32,
|
||||
0x7e, 0xdf, 0xaa, 0xfa, 0x71, 0x31, 0xcd, 0x9f,
|
||||
0x84, 0x90, 0x70, 0x1c, 0x5a, 0xd4, 0xa7, 0x9c,
|
||||
0xfc, 0x1f, 0xe0, 0xff, 0x42, 0xf4, 0xfb, 0x00
|
||||
}
|
||||
},
|
||||
{ 24, 36, /* Vector 6 */
|
||||
{ 0x02, 0xbf, 0x39, 0x1e, 0xe8, 0xec, 0xb1, 0x59,
|
||||
0xb9, 0x59, 0x61, 0x7b, 0x09, 0x65, 0x27, 0x9b,
|
||||
0xf5, 0x9b, 0x60, 0xa7, 0x86, 0xd3, 0xe0, 0xfe
|
||||
},
|
||||
{ 0x5c, 0xbd, 0x60, 0x27, 0x8d, 0xcc, 0x09, 0x12
|
||||
},
|
||||
{ 0x00, 0x07, 0xbd, 0xfd
|
||||
},
|
||||
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
||||
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
||||
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
||||
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
|
||||
0x20, 0x21, 0x22, 0x23
|
||||
},
|
||||
{ 0x00, 0x07, 0xbd, 0xfd, 0x5c, 0xbd, 0x60, 0x27,
|
||||
0x8d, 0xcc, 0x09, 0x12, 0x00, 0x00, 0x00, 0x01,
|
||||
0x00, 0x07, 0xbd, 0xfd, 0x5c, 0xbd, 0x60, 0x27,
|
||||
0x8d, 0xcc, 0x09, 0x12, 0x00, 0x00, 0x00, 0x03,
|
||||
0x00, 0x07, 0xbd, 0xfd, 0x5c, 0xbd, 0x60, 0x27,
|
||||
0x8d, 0xcc, 0x09, 0x12, 0x00, 0x00, 0x00, 0x02
|
||||
},
|
||||
{ 0x96, 0x88, 0x3d, 0xc6, 0x5a, 0x59, 0x74, 0x28,
|
||||
0x5c, 0x02, 0x77, 0xda, 0xd1, 0xfa, 0xe9, 0x57,
|
||||
0xc2, 0x99, 0xae, 0x86, 0xd2, 0x84, 0x73, 0x9f,
|
||||
0x5d, 0x2f, 0xd2, 0x0a, 0x7a, 0x32, 0x3f, 0x97,
|
||||
0x8b, 0xcf, 0x2b, 0x16, 0x39, 0x99, 0xb2, 0x26,
|
||||
0x15, 0xb4, 0x9c, 0xd4, 0xfe, 0x57, 0x39, 0x98
|
||||
},
|
||||
{ 0x96, 0x89, 0x3f, 0xc5, 0x5e, 0x5c, 0x72, 0x2f,
|
||||
0x54, 0x0b, 0x7d, 0xd1, 0xdd, 0xf7, 0xe7, 0x58,
|
||||
0xd2, 0x88, 0xbc, 0x95, 0xc6, 0x91, 0x65, 0x88,
|
||||
0x45, 0x36, 0xc8, 0x11, 0x66, 0x2f, 0x21, 0x88,
|
||||
0xab, 0xee, 0x09, 0x35
|
||||
}
|
||||
},
|
||||
{ 32, 16, /* Vector 7 */
|
||||
{ 0x77, 0x6b, 0xef, 0xf2, 0x85, 0x1d, 0xb0, 0x6f,
|
||||
0x4c, 0x8a, 0x05, 0x42, 0xc8, 0x69, 0x6f, 0x6c,
|
||||
0x6a, 0x81, 0xaf, 0x1e, 0xec, 0x96, 0xb4, 0xd3,
|
||||
0x7f, 0xc1, 0xd6, 0x89, 0xe6, 0xc1, 0xc1, 0x04
|
||||
},
|
||||
{ 0xdb, 0x56, 0x72, 0xc9, 0x7a, 0xa8, 0xf0, 0xb2
|
||||
},
|
||||
{ 0x00, 0x00, 0x00, 0x60
|
||||
},
|
||||
/* "Single block msg" */
|
||||
{ 0x53, 0x69, 0x6e, 0x67, 0x6c, 0x65, 0x20, 0x62,
|
||||
0x6c, 0x6f, 0x63, 0x6b, 0x20, 0x6d, 0x73, 0x67
|
||||
},
|
||||
{ 0x00, 0x00, 0x00, 0x60, 0xdb, 0x56, 0x72, 0xc9,
|
||||
0x7a, 0xa8, 0xf0, 0xb2, 0x00, 0x00, 0x00, 0x01
|
||||
},
|
||||
{ 0x47, 0x33, 0xbe, 0x7a, 0xd3, 0xe7, 0x6e, 0xa5,
|
||||
0x3a, 0x67, 0x00, 0xb7, 0x51, 0x8e, 0x93, 0xa7
|
||||
},
|
||||
{ 0x14, 0x5a, 0xd0, 0x1d, 0xbf, 0x82, 0x4e, 0xc7,
|
||||
0x56, 0x08, 0x63, 0xdc, 0x71, 0xe3, 0xe0, 0xc0
|
||||
}
|
||||
},
|
||||
{ 32, 32, /* Vector 8 */
|
||||
{ 0xf6, 0xd6, 0x6d, 0x6b, 0xd5, 0x2d, 0x59, 0xbb,
|
||||
0x07, 0x96, 0x36, 0x58, 0x79, 0xef, 0xf8, 0x86,
|
||||
0xc6, 0x6d, 0xd5, 0x1a, 0x5b, 0x6a, 0x99, 0x74,
|
||||
0x4b, 0x50, 0x59, 0x0c, 0x87, 0xa2, 0x38, 0x84
|
||||
},
|
||||
{ 0xc1, 0x58, 0x5e, 0xf1, 0x5a, 0x43, 0xd8, 0x75
|
||||
},
|
||||
{ 0x00, 0xfa, 0xac, 0x24
|
||||
},
|
||||
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
||||
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
||||
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
||||
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
|
||||
},
|
||||
{ 0x00, 0xfa, 0xac, 0x24, 0xc1, 0x58, 0x5e, 0xf1,
|
||||
0x5a, 0x43, 0xd8, 0x75, 0x00, 0x00, 0x00, 0x01,
|
||||
0x00, 0xfa, 0xac, 0x24, 0xc1, 0x58, 0x5e, 0xf1,
|
||||
0x5a, 0x43, 0xd8, 0x75, 0x00, 0x00, 0x00, 0x02
|
||||
},
|
||||
{ 0xf0, 0x5f, 0x21, 0x18, 0x3c, 0x91, 0x67, 0x2b,
|
||||
0x41, 0xe7, 0x0a, 0x00, 0x8c, 0x43, 0xbc, 0xa6,
|
||||
0xa8, 0x21, 0x79, 0x43, 0x9b, 0x96, 0x8b, 0x7d,
|
||||
0x4d, 0x29, 0x99, 0x06, 0x8f, 0x59, 0xb1, 0x03
|
||||
},
|
||||
{ 0xf0, 0x5e, 0x23, 0x1b, 0x38, 0x94, 0x61, 0x2c,
|
||||
0x49, 0xee, 0x00, 0x0b, 0x80, 0x4e, 0xb2, 0xa9,
|
||||
0xb8, 0x30, 0x6b, 0x50, 0x8f, 0x83, 0x9d, 0x6a,
|
||||
0x55, 0x30, 0x83, 0x1d, 0x93, 0x44, 0xaf, 0x1c
|
||||
}
|
||||
},
|
||||
{ 32, 36, /* Vector 9 */
|
||||
{ 0xff, 0x7a, 0x61, 0x7c, 0xe6, 0x91, 0x48, 0xe4,
|
||||
0xf1, 0x72, 0x6e, 0x2f, 0x43, 0x58, 0x1d, 0xe2,
|
||||
0xaa, 0x62, 0xd9, 0xf8, 0x05, 0x53, 0x2e, 0xdf,
|
||||
0xf1, 0xee, 0xd6, 0x87, 0xfb, 0x54, 0x15, 0x3d
|
||||
},
|
||||
{ 0x51, 0xa5, 0x1d, 0x70, 0xa1, 0xc1, 0x11, 0x48
|
||||
},
|
||||
{ 0x00, 0x1c, 0xc5, 0xb7
|
||||
},
|
||||
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
||||
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
||||
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
||||
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
|
||||
0x20, 0x21, 0x22, 0x23
|
||||
},
|
||||
{ 0x00, 0x1c, 0xc5, 0xb7, 0x51, 0xa5, 0x1d, 0x70,
|
||||
0xa1, 0xc1, 0x11, 0x48, 0x00, 0x00, 0x00, 0x01,
|
||||
0x00, 0x1c, 0xc5, 0xb7, 0x51, 0xa5, 0x1d, 0x70,
|
||||
0xa1, 0xc1, 0x11, 0x48, 0x00, 0x00, 0x00, 0x02,
|
||||
0x00, 0x1c, 0xc5, 0xb7, 0x51, 0xa5, 0x1d, 0x70,
|
||||
0xa1, 0xc1, 0x11, 0x48, 0x00, 0x00, 0x00, 0x03
|
||||
},
|
||||
{ 0xeb, 0x6d, 0x50, 0x81, 0x19, 0x0e, 0xbd, 0xf0,
|
||||
0xc6, 0x7c, 0x9e, 0x4d, 0x26, 0xc7, 0x41, 0xa5,
|
||||
0xa4, 0x16, 0xcd, 0x95, 0x71, 0x7c, 0xeb, 0x10,
|
||||
0xec, 0x95, 0xda, 0xae, 0x9f, 0xcb, 0x19, 0x00,
|
||||
0x3e, 0xe1, 0xc4, 0x9b, 0xc6, 0xb9, 0xca, 0x21,
|
||||
0x3f, 0x6e, 0xe2, 0x71, 0xd0, 0xa9, 0x33, 0x39
|
||||
},
|
||||
{ 0xeb, 0x6c, 0x52, 0x82, 0x1d, 0x0b, 0xbb, 0xf7,
|
||||
0xce, 0x75, 0x94, 0x46, 0x2a, 0xca, 0x4f, 0xaa,
|
||||
0xb4, 0x07, 0xdf, 0x86, 0x65, 0x69, 0xfd, 0x07,
|
||||
0xf4, 0x8c, 0xc0, 0xb5, 0x83, 0xd6, 0x07, 0x1f,
|
||||
0x1e, 0xc0, 0xe6, 0xb8
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
void rfc3686_inc(unsigned char ctr_buf[AES_BLOCK_SIZE])
|
||||
{
|
||||
if(!(++(ctr_buf[15])))
|
||||
if(!(++(ctr_buf[14])))
|
||||
if(!(++(ctr_buf[13])))
|
||||
++(ctr_buf[12]);
|
||||
}
|
||||
|
||||
void rfc3686_init( unsigned char nonce[4], unsigned char iv[8], unsigned char ctr_buf[AES_BLOCK_SIZE])
|
||||
{
|
||||
memcpy(ctr_buf, nonce, 4);
|
||||
memcpy(ctr_buf + 4, iv, 8);
|
||||
memset(ctr_buf + 12, 0, 4);
|
||||
rfc3686_inc(ctr_buf);
|
||||
}
|
||||
|
||||
AES_RETURN rfc3686_crypt(const unsigned char *ibuf, unsigned char *obuf, int len,
|
||||
unsigned char *cbuf, aes_encrypt_ctx cx[1])
|
||||
{
|
||||
return aes_ctr_crypt(ibuf, obuf, len, cbuf, rfc3686_inc, cx);
|
||||
}
|
||||
|
||||
void rfc3686_test(void)
|
||||
{ aes_encrypt_ctx aes_ctx[1];
|
||||
unsigned char ctr_buf[AES_BLOCK_SIZE];
|
||||
unsigned char obuf[36];
|
||||
unsigned int i, err = 0;
|
||||
|
||||
for( i = 0 ; i < sizeof(tests) / sizeof(test_str) ; ++i )
|
||||
{
|
||||
aes_encrypt_key(tests[i].key, tests[i].k_len, aes_ctx);
|
||||
rfc3686_init(tests[i].nonce, tests[i].iv, ctr_buf);
|
||||
rfc3686_crypt(tests[i].p_txt, obuf, tests[i].m_len, ctr_buf, aes_ctx);
|
||||
if(memcmp(obuf, tests[i].c_txt, tests[i].m_len) != 0)
|
||||
{
|
||||
err++;
|
||||
printf("error\n");
|
||||
}
|
||||
}
|
||||
if(!err)
|
||||
printf("RFC3686 Tests Passed\n");
|
||||
}
|
||||
|
||||
int main(void)
|
||||
{
|
||||
rfc3686_test();
|
||||
return 0;
|
||||
}
|
||||
318
crypto/src/main/jni/final_key/aes/tablegen.c
Normal file
318
crypto/src/main/jni/final_key/aes/tablegen.c
Normal file
@@ -0,0 +1,318 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2013, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation.
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its operation, including, but not limited to, correctness
|
||||
and fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
*/
|
||||
|
||||
#define DO_TABLES
|
||||
|
||||
#include <stdio.h>
|
||||
#include "aesaux.h"
|
||||
#include "aesopt.h"
|
||||
|
||||
#define sb_data(w) {\
|
||||
w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), w(0xc5),\
|
||||
w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), w(0xab), w(0x76),\
|
||||
w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), w(0x59), w(0x47), w(0xf0),\
|
||||
w(0xad), w(0xd4), w(0xa2), w(0xaf), w(0x9c), w(0xa4), w(0x72), w(0xc0),\
|
||||
w(0xb7), w(0xfd), w(0x93), w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc),\
|
||||
w(0x34), w(0xa5), w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15),\
|
||||
w(0x04), w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a),\
|
||||
w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), w(0x75),\
|
||||
w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), w(0x5a), w(0xa0),\
|
||||
w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), w(0xe3), w(0x2f), w(0x84),\
|
||||
w(0x53), w(0xd1), w(0x00), w(0xed), w(0x20), w(0xfc), w(0xb1), w(0x5b),\
|
||||
w(0x6a), w(0xcb), w(0xbe), w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf),\
|
||||
w(0xd0), w(0xef), w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85),\
|
||||
w(0x45), w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8),\
|
||||
w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), w(0xf5),\
|
||||
w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), w(0xf3), w(0xd2),\
|
||||
w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), w(0x97), w(0x44), w(0x17),\
|
||||
w(0xc4), w(0xa7), w(0x7e), w(0x3d), w(0x64), w(0x5d), w(0x19), w(0x73),\
|
||||
w(0x60), w(0x81), w(0x4f), w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88),\
|
||||
w(0x46), w(0xee), w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb),\
|
||||
w(0xe0), w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c),\
|
||||
w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), w(0x79),\
|
||||
w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), w(0x4e), w(0xa9),\
|
||||
w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), w(0x7a), w(0xae), w(0x08),\
|
||||
w(0xba), w(0x78), w(0x25), w(0x2e), w(0x1c), w(0xa6), w(0xb4), w(0xc6),\
|
||||
w(0xe8), w(0xdd), w(0x74), w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a),\
|
||||
w(0x70), w(0x3e), w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e),\
|
||||
w(0x61), w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e),\
|
||||
w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), w(0x94),\
|
||||
w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), w(0x28), w(0xdf),\
|
||||
w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), w(0xe6), w(0x42), w(0x68),\
|
||||
w(0x41), w(0x99), w(0x2d), w(0x0f), w(0xb0), w(0x54), w(0xbb), w(0x16) }
|
||||
|
||||
#define isb_data(w) {\
|
||||
w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), w(0x38),\
|
||||
w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), w(0xd7), w(0xfb),\
|
||||
w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), w(0x2f), w(0xff), w(0x87),\
|
||||
w(0x34), w(0x8e), w(0x43), w(0x44), w(0xc4), w(0xde), w(0xe9), w(0xcb),\
|
||||
w(0x54), w(0x7b), w(0x94), w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d),\
|
||||
w(0xee), w(0x4c), w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e),\
|
||||
w(0x08), w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2),\
|
||||
w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), w(0x25),\
|
||||
w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), w(0x98), w(0x16),\
|
||||
w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), w(0x65), w(0xb6), w(0x92),\
|
||||
w(0x6c), w(0x70), w(0x48), w(0x50), w(0xfd), w(0xed), w(0xb9), w(0xda),\
|
||||
w(0x5e), w(0x15), w(0x46), w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84),\
|
||||
w(0x90), w(0xd8), w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a),\
|
||||
w(0xf7), w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06),\
|
||||
w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), w(0x02),\
|
||||
w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), w(0x8a), w(0x6b),\
|
||||
w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), w(0x67), w(0xdc), w(0xea),\
|
||||
w(0x97), w(0xf2), w(0xcf), w(0xce), w(0xf0), w(0xb4), w(0xe6), w(0x73),\
|
||||
w(0x96), w(0xac), w(0x74), w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85),\
|
||||
w(0xe2), w(0xf9), w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e),\
|
||||
w(0x47), w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89),\
|
||||
w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), w(0x1b),\
|
||||
w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), w(0x79), w(0x20),\
|
||||
w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), w(0xcd), w(0x5a), w(0xf4),\
|
||||
w(0x1f), w(0xdd), w(0xa8), w(0x33), w(0x88), w(0x07), w(0xc7), w(0x31),\
|
||||
w(0xb1), w(0x12), w(0x10), w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f),\
|
||||
w(0x60), w(0x51), w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d),\
|
||||
w(0x2d), w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef),\
|
||||
w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), w(0xb0),\
|
||||
w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), w(0x99), w(0x61),\
|
||||
w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), w(0x77), w(0xd6), w(0x26),\
|
||||
w(0xe1), w(0x69), w(0x14), w(0x63), w(0x55), w(0x21), w(0x0c), w(0x7d) }
|
||||
|
||||
#define mm_data(w) {\
|
||||
w(0x00), w(0x01), w(0x02), w(0x03), w(0x04), w(0x05), w(0x06), w(0x07),\
|
||||
w(0x08), w(0x09), w(0x0a), w(0x0b), w(0x0c), w(0x0d), w(0x0e), w(0x0f),\
|
||||
w(0x10), w(0x11), w(0x12), w(0x13), w(0x14), w(0x15), w(0x16), w(0x17),\
|
||||
w(0x18), w(0x19), w(0x1a), w(0x1b), w(0x1c), w(0x1d), w(0x1e), w(0x1f),\
|
||||
w(0x20), w(0x21), w(0x22), w(0x23), w(0x24), w(0x25), w(0x26), w(0x27),\
|
||||
w(0x28), w(0x29), w(0x2a), w(0x2b), w(0x2c), w(0x2d), w(0x2e), w(0x2f),\
|
||||
w(0x30), w(0x31), w(0x32), w(0x33), w(0x34), w(0x35), w(0x36), w(0x37),\
|
||||
w(0x38), w(0x39), w(0x3a), w(0x3b), w(0x3c), w(0x3d), w(0x3e), w(0x3f),\
|
||||
w(0x40), w(0x41), w(0x42), w(0x43), w(0x44), w(0x45), w(0x46), w(0x47),\
|
||||
w(0x48), w(0x49), w(0x4a), w(0x4b), w(0x4c), w(0x4d), w(0x4e), w(0x4f),\
|
||||
w(0x50), w(0x51), w(0x52), w(0x53), w(0x54), w(0x55), w(0x56), w(0x57),\
|
||||
w(0x58), w(0x59), w(0x5a), w(0x5b), w(0x5c), w(0x5d), w(0x5e), w(0x5f),\
|
||||
w(0x60), w(0x61), w(0x62), w(0x63), w(0x64), w(0x65), w(0x66), w(0x67),\
|
||||
w(0x68), w(0x69), w(0x6a), w(0x6b), w(0x6c), w(0x6d), w(0x6e), w(0x6f),\
|
||||
w(0x70), w(0x71), w(0x72), w(0x73), w(0x74), w(0x75), w(0x76), w(0x77),\
|
||||
w(0x78), w(0x79), w(0x7a), w(0x7b), w(0x7c), w(0x7d), w(0x7e), w(0x7f),\
|
||||
w(0x80), w(0x81), w(0x82), w(0x83), w(0x84), w(0x85), w(0x86), w(0x87),\
|
||||
w(0x88), w(0x89), w(0x8a), w(0x8b), w(0x8c), w(0x8d), w(0x8e), w(0x8f),\
|
||||
w(0x90), w(0x91), w(0x92), w(0x93), w(0x94), w(0x95), w(0x96), w(0x97),\
|
||||
w(0x98), w(0x99), w(0x9a), w(0x9b), w(0x9c), w(0x9d), w(0x9e), w(0x9f),\
|
||||
w(0xa0), w(0xa1), w(0xa2), w(0xa3), w(0xa4), w(0xa5), w(0xa6), w(0xa7),\
|
||||
w(0xa8), w(0xa9), w(0xaa), w(0xab), w(0xac), w(0xad), w(0xae), w(0xaf),\
|
||||
w(0xb0), w(0xb1), w(0xb2), w(0xb3), w(0xb4), w(0xb5), w(0xb6), w(0xb7),\
|
||||
w(0xb8), w(0xb9), w(0xba), w(0xbb), w(0xbc), w(0xbd), w(0xbe), w(0xbf),\
|
||||
w(0xc0), w(0xc1), w(0xc2), w(0xc3), w(0xc4), w(0xc5), w(0xc6), w(0xc7),\
|
||||
w(0xc8), w(0xc9), w(0xca), w(0xcb), w(0xcc), w(0xcd), w(0xce), w(0xcf),\
|
||||
w(0xd0), w(0xd1), w(0xd2), w(0xd3), w(0xd4), w(0xd5), w(0xd6), w(0xd7),\
|
||||
w(0xd8), w(0xd9), w(0xda), w(0xdb), w(0xdc), w(0xdd), w(0xde), w(0xdf),\
|
||||
w(0xe0), w(0xe1), w(0xe2), w(0xe3), w(0xe4), w(0xe5), w(0xe6), w(0xe7),\
|
||||
w(0xe8), w(0xe9), w(0xea), w(0xeb), w(0xec), w(0xed), w(0xee), w(0xef),\
|
||||
w(0xf0), w(0xf1), w(0xf2), w(0xf3), w(0xf4), w(0xf5), w(0xf6), w(0xf7),\
|
||||
w(0xf8), w(0xf9), w(0xfa), w(0xfb), w(0xfc), w(0xfd), w(0xfe), w(0xff) }
|
||||
|
||||
#define rc_data(w) {\
|
||||
w(0x01), w(0x02), w(0x04), w(0x08), w(0x10),w(0x20), w(0x40), w(0x80),\
|
||||
w(0x1b), w(0x36) }
|
||||
|
||||
#define h0(x) (x)
|
||||
|
||||
#define w0(p) bytes2word(p, 0, 0, 0)
|
||||
#define w1(p) bytes2word(0, p, 0, 0)
|
||||
#define w2(p) bytes2word(0, 0, p, 0)
|
||||
#define w3(p) bytes2word(0, 0, 0, p)
|
||||
|
||||
#define u0(p) bytes2word(f2(p), p, p, f3(p))
|
||||
#define u1(p) bytes2word(f3(p), f2(p), p, p)
|
||||
#define u2(p) bytes2word(p, f3(p), f2(p), p)
|
||||
#define u3(p) bytes2word(p, p, f3(p), f2(p))
|
||||
|
||||
#define v0(p) bytes2word(fe(p), f9(p), fd(p), fb(p))
|
||||
#define v1(p) bytes2word(fb(p), fe(p), f9(p), fd(p))
|
||||
#define v2(p) bytes2word(fd(p), fb(p), fe(p), f9(p))
|
||||
#define v3(p) bytes2word(f9(p), fd(p), fb(p), fe(p))
|
||||
|
||||
#define f2(x) ((x<<1) ^ (((x>>7) & 1) * WPOLY))
|
||||
#define f4(x) ((x<<2) ^ (((x>>6) & 1) * WPOLY) ^ (((x>>6) & 2) * WPOLY))
|
||||
#define f8(x) ((x<<3) ^ (((x>>5) & 1) * WPOLY) ^ (((x>>5) & 2) * WPOLY) \
|
||||
^ (((x>>5) & 4) * WPOLY))
|
||||
#define f3(x) (f2(x) ^ x)
|
||||
#define f9(x) (f8(x) ^ x)
|
||||
#define fb(x) (f8(x) ^ f2(x) ^ x)
|
||||
#define fd(x) (f8(x) ^ f4(x) ^ x)
|
||||
#define fe(x) (f8(x) ^ f4(x) ^ f2(x))
|
||||
|
||||
#include "aestab.h"
|
||||
|
||||
#define t_parm(m,n) "t_"#m#n, t_##m##n
|
||||
|
||||
void rtab(FILE *f, unsigned char *h, const unsigned int t[RC_LENGTH])
|
||||
{ int i;
|
||||
|
||||
fprintf(f, "\nuint32_t %s[RC_LENGTH] = \n{", h);
|
||||
|
||||
for(i = 0; i < RC_LENGTH; ++i)
|
||||
{
|
||||
if(i % 4 == 0)
|
||||
fprintf(f, "\n ");
|
||||
if(i != RC_LENGTH - 1)
|
||||
fprintf(f, "0x%08x, ", t[i]);
|
||||
else
|
||||
fprintf(f, "0x%08x ", t[i]);
|
||||
}
|
||||
|
||||
fprintf(f, "\n};\n");
|
||||
}
|
||||
|
||||
void btab_1(FILE *f, unsigned char *h, const unsigned char t[256])
|
||||
{ int i;
|
||||
|
||||
fprintf(f, "\nuint8_t %s[256] = \n{", h);
|
||||
|
||||
for(i = 0; i < 256; ++i)
|
||||
{
|
||||
if(i % 8 == 0)
|
||||
fprintf(f, "\n ");
|
||||
if(i != 255)
|
||||
fprintf(f, "0x%02x, ", t[i]);
|
||||
else
|
||||
fprintf(f, "0x%02x ", t[i]);
|
||||
}
|
||||
|
||||
fprintf(f, "\n};\n");
|
||||
}
|
||||
|
||||
void wtab_1(FILE *f, unsigned char *h, const unsigned int t[256])
|
||||
{ int i;
|
||||
|
||||
fprintf(f, "\nuint32_t %s[256] = \n{", h);
|
||||
|
||||
for(i = 0; i < 256; ++i)
|
||||
{
|
||||
if(i % 4 == 0)
|
||||
fprintf(f, "\n ");
|
||||
if(i != 255)
|
||||
fprintf(f, "0x%08x, ", t[i]);
|
||||
else
|
||||
fprintf(f, "0x%08x ", t[i]);
|
||||
}
|
||||
|
||||
fprintf(f, "\n};\n");
|
||||
}
|
||||
|
||||
void wtab_4(FILE *f, unsigned char *h, const unsigned int t[4][256])
|
||||
{ int i, j;
|
||||
|
||||
fprintf(f, "\nuint32_t %s[4][256] = \n{", h);
|
||||
|
||||
for(i = 0; i < 4; ++i)
|
||||
{
|
||||
fprintf(f, "\n {");
|
||||
|
||||
for(j = 0; j < 256; ++j)
|
||||
{
|
||||
if(j % 4 == 0)
|
||||
fprintf(f, "\n ");
|
||||
if(j != 255)
|
||||
fprintf(f, "0x%08x, ", t[i][j]);
|
||||
else
|
||||
fprintf(f, "0x%08x ", t[i][j]);
|
||||
}
|
||||
|
||||
if(i != 3)
|
||||
fprintf(f, "\n },");
|
||||
else
|
||||
fprintf(f, "\n }");
|
||||
}
|
||||
|
||||
fprintf(f, "\n};\n");
|
||||
}
|
||||
|
||||
int main(void)
|
||||
{ FILE *f;
|
||||
char *fn = "aestab2.c";
|
||||
|
||||
if(fopen_s(&f, fn, "w"))
|
||||
{
|
||||
printf("\nCannot open %s for output\n", fn);
|
||||
return -1;
|
||||
}
|
||||
|
||||
fprintf(f, "\n#include \"aes.h\"\n");
|
||||
fprintf(f, "\n#define RC_LENGTH (5 * (AES_BLOCK_SIZE / 4 - 2))\n");
|
||||
fprintf(f, "\nvoid aes_init() \n{ \n}\n");
|
||||
|
||||
rtab(f, t_parm(r,c));
|
||||
|
||||
#if defined( SBX_SET )
|
||||
btab_1(f, t_parm(s,box));
|
||||
#endif
|
||||
|
||||
#if defined( ISB_SET )
|
||||
btab_1(f, t_parm(i,box));
|
||||
#endif
|
||||
|
||||
#if defined( FT1_SET )
|
||||
wtab_1(f, t_parm(f,n));
|
||||
#endif
|
||||
#if defined( FT4_SET )
|
||||
wtab_4(f, t_parm(f,n));
|
||||
#endif
|
||||
|
||||
#if defined( FL1_SET )
|
||||
wtab_1(f, t_parm(f,l));
|
||||
#endif
|
||||
#if defined( FL4_SET )
|
||||
wtab_4(f, t_parm(f,l));
|
||||
#endif
|
||||
|
||||
#if defined( IT1_SET )
|
||||
wtab_1(f, t_parm(i,n));
|
||||
#endif
|
||||
#if defined( IT4_SET )
|
||||
wtab_4(f, t_parm(i,n));
|
||||
#endif
|
||||
|
||||
#if defined( IL1_SET )
|
||||
wtab_1(f, t_parm(i,l));
|
||||
#endif
|
||||
#if defined( IL4_SET )
|
||||
wtab_4(f, t_parm(i,l));
|
||||
#endif
|
||||
|
||||
#if defined( LS1_SET )
|
||||
#if !defined( FL1_SET )
|
||||
wtab_1(f, t_parm(l,s));
|
||||
#endif
|
||||
#endif
|
||||
#if defined( LS4_SET )
|
||||
#if !defined( FL4_SET )
|
||||
wtab_4(f, t_parm(l,s));
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined( IM1_SET )
|
||||
wtab_1(f, t_parm(i,m));
|
||||
#endif
|
||||
#if defined( IM4_SET )
|
||||
wtab_4(f, t_parm(i,m));
|
||||
#endif
|
||||
|
||||
fclose(f);
|
||||
return 0;
|
||||
}
|
||||
525
crypto/src/main/jni/final_key/kpd_jni.c
Normal file
525
crypto/src/main/jni/final_key/kpd_jni.c
Normal file
@@ -0,0 +1,525 @@
|
||||
/*
|
||||
This is a JNI wrapper for AES & SHA source code on Android.
|
||||
Copyright (C) 2010 Michael Mohr
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <inttypes.h>
|
||||
#include <string.h>
|
||||
#include <pthread.h>
|
||||
#include <jni.h>
|
||||
|
||||
/* Tune as desired */
|
||||
#undef KPD_PROFILE
|
||||
//#define KPD_DEBUG
|
||||
|
||||
#if defined(KPD_PROFILE)
|
||||
#include <time.h>
|
||||
#endif
|
||||
|
||||
#if defined(KPD_DEBUG)
|
||||
#include <android/log.h>
|
||||
#endif
|
||||
|
||||
#include "aes.h"
|
||||
#include "sha2.h"
|
||||
|
||||
static JavaVM *cached_vm;
|
||||
static jclass bad_arg, no_mem, bad_padding, short_buf, block_size;
|
||||
|
||||
typedef enum {
|
||||
ENCRYPTION,
|
||||
DECRYPTION,
|
||||
FINALIZED
|
||||
} edir_t;
|
||||
|
||||
#define AES_BLOCK_SIZE 16
|
||||
#define CACHE_SIZE 32
|
||||
|
||||
typedef struct _aes_state {
|
||||
edir_t direction;
|
||||
uint32_t cache_len;
|
||||
uint8_t iv[16], cache[CACHE_SIZE];
|
||||
uint8_t ctx[sizeof(aes_encrypt_ctx)]; // 244
|
||||
} aes_state;
|
||||
|
||||
#define ENC_CTX(state) (((aes_encrypt_ctx *)((state)->ctx)))
|
||||
#define DEC_CTX(state) (((aes_decrypt_ctx *)((state)->ctx)))
|
||||
#define ALIGN_EXTRA 15
|
||||
#define ALIGN16(x) (void *)(((uintptr_t)(x)+ALIGN_EXTRA) & ~ 0x0F)
|
||||
|
||||
JNIEXPORT jint JNICALL JNI_OnLoad( JavaVM *vm, void *reserved ) {
|
||||
JNIEnv *env;
|
||||
jclass cls;
|
||||
|
||||
cached_vm = vm;
|
||||
if((*vm)->GetEnv(vm, (void **)&env, JNI_VERSION_1_6))
|
||||
return JNI_ERR;
|
||||
|
||||
cls = (*env)->FindClass(env, "java/lang/IllegalArgumentException");
|
||||
if( cls == NULL )
|
||||
return JNI_ERR;
|
||||
bad_arg = (*env)->NewGlobalRef(env, cls);
|
||||
if( bad_arg == NULL )
|
||||
return JNI_ERR;
|
||||
|
||||
cls = (*env)->FindClass(env, "java/lang/OutOfMemoryError");
|
||||
if( cls == NULL )
|
||||
return JNI_ERR;
|
||||
no_mem = (*env)->NewGlobalRef(env, cls);
|
||||
if( no_mem == NULL )
|
||||
return JNI_ERR;
|
||||
|
||||
cls = (*env)->FindClass(env, "javax/crypto/BadPaddingException");
|
||||
if( cls == NULL )
|
||||
return JNI_ERR;
|
||||
bad_padding = (*env)->NewGlobalRef(env, cls);
|
||||
|
||||
cls = (*env)->FindClass(env, "javax/crypto/ShortBufferException");
|
||||
if( cls == NULL )
|
||||
return JNI_ERR;
|
||||
short_buf = (*env)->NewGlobalRef(env, cls);
|
||||
|
||||
cls = (*env)->FindClass(env, "javax/crypto/IllegalBlockSizeException");
|
||||
if( cls == NULL )
|
||||
return JNI_ERR;
|
||||
block_size = (*env)->NewGlobalRef(env, cls);
|
||||
|
||||
aes_init();
|
||||
|
||||
return JNI_VERSION_1_6;
|
||||
}
|
||||
|
||||
// called on garbage collection
|
||||
JNIEXPORT void JNICALL JNI_OnUnload( JavaVM *vm, void *reserved ) {
|
||||
JNIEnv *env;
|
||||
if((*vm)->GetEnv(vm, (void **)&env, JNI_VERSION_1_6)) {
|
||||
return;
|
||||
}
|
||||
(*env)->DeleteGlobalRef(env, bad_arg);
|
||||
(*env)->DeleteGlobalRef(env, no_mem);
|
||||
(*env)->DeleteGlobalRef(env, bad_padding);
|
||||
(*env)->DeleteGlobalRef(env, short_buf);
|
||||
(*env)->DeleteGlobalRef(env, block_size);
|
||||
return;
|
||||
}
|
||||
|
||||
JNIEXPORT jlong JNICALL Java_com_kunzisoft_encrypt_aes_NativeAESCipherSpi_nInit(JNIEnv *env, jobject this, jboolean encrypting, jbyteArray key, jbyteArray iv) {
|
||||
uint8_t ckey[32];
|
||||
aes_state *state;
|
||||
jint key_len = (*env)->GetArrayLength(env, key);
|
||||
jint iv_len = (*env)->GetArrayLength(env, iv);
|
||||
|
||||
if( ! ( key_len == 16 || key_len == 24 || key_len == 32 ) || iv_len != 16 ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "Invalid length of key or iv");
|
||||
return -1;
|
||||
}
|
||||
|
||||
state = (aes_state *)malloc(sizeof(aes_state));
|
||||
if( state == NULL ) {
|
||||
(*env)->ThrowNew(env, no_mem, "Cannot allocate memory for the encryption state");
|
||||
return -1;
|
||||
}
|
||||
memset(state, 0, sizeof(aes_state));
|
||||
|
||||
(*env)->GetByteArrayRegion(env, key, (jint)0, key_len, (jbyte *)ckey);
|
||||
(*env)->GetByteArrayRegion(env, iv, (jint)0, iv_len, (jbyte *)state->iv);
|
||||
|
||||
if( encrypting ) {
|
||||
state->direction = ENCRYPTION;
|
||||
aes_encrypt_key(ckey, key_len, ENC_CTX(state));
|
||||
} else {
|
||||
state->direction = DECRYPTION;
|
||||
aes_decrypt_key(ckey, key_len, DEC_CTX(state));
|
||||
}
|
||||
|
||||
return (jlong)state;
|
||||
}
|
||||
|
||||
JNIEXPORT void JNICALL Java_com_kunzisoft_encrypt_aes_NativeAESCipherSpi_nCleanup(JNIEnv *env, jclass this, jlong state) {
|
||||
free((void *)state);
|
||||
}
|
||||
|
||||
/*
|
||||
TODO:
|
||||
It seems like the android implementation of the AES cipher stays a
|
||||
block behind with update calls. So, if you do an update for 16 bytes,
|
||||
it will return nothing in the output buffer. Then, it is the finalize
|
||||
call that will return the last block stripping off padding if it is
|
||||
not a full block.
|
||||
*/
|
||||
|
||||
JNIEXPORT jint JNICALL Java_com_kunzisoft_encrypt_aes_NativeAESCipherSpi_nUpdate(JNIEnv *env, jobject this,
|
||||
jlong state, jbyteArray input, jint inputOffset, jint inputLen, jbyteArray output, jint outputOffset, jint outputSize) {
|
||||
int aes_ret;
|
||||
uint32_t outLen, bytes2cache, cryptLen;
|
||||
void *in, *out;
|
||||
uint8_t *c_input, *c_output;
|
||||
aes_state *c_state;
|
||||
|
||||
#if defined(KPD_DEBUG)
|
||||
__android_log_print(ANDROID_LOG_INFO, "kpd_jni.c/nUpdate", "entry: inputLen=%d, outputSize=%d", inputLen, outputSize);
|
||||
#endif
|
||||
|
||||
// step 1: first, some housecleaning
|
||||
if( !inputLen || !outputSize || outputOffset < 0 || !input || !output ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "nUpdate: called with 1 or more invalid arguments");
|
||||
return -1;
|
||||
}
|
||||
c_state = (aes_state *)state;
|
||||
if( c_state->direction == FINALIZED ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "Trying to update a finalized state");
|
||||
return -1;
|
||||
}
|
||||
|
||||
// step 1.5: calculate cryptLen and outLen
|
||||
cryptLen = inputLen + c_state->cache_len;
|
||||
if( cryptLen < CACHE_SIZE ) {
|
||||
(*env)->GetByteArrayRegion(env, input, inputOffset, inputLen, (jbyte *)(c_state->cache + c_state->cache_len));
|
||||
c_state->cache_len = cryptLen;
|
||||
return 0;
|
||||
}
|
||||
// now we're guaranteed that cryptLen >= CACHE_SIZE (32)
|
||||
bytes2cache = (cryptLen & 15) + AES_BLOCK_SIZE; // mask bottom 4 bits plus 1 block
|
||||
outLen = (cryptLen - bytes2cache); // output length is now aligned to a 16-byte boundary
|
||||
if( outLen > (uint32_t)outputSize ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "Output buffer does not have enough space");
|
||||
return -1;
|
||||
}
|
||||
|
||||
// step 2: allocate memory to hold input and output data
|
||||
in = malloc(cryptLen+ALIGN_EXTRA);
|
||||
if( in == NULL ) {
|
||||
(*env)->ThrowNew(env, no_mem, "Unable to allocate heap space for encryption input");
|
||||
return -1;
|
||||
}
|
||||
c_input = ALIGN16(in);
|
||||
|
||||
out = malloc(outLen+ALIGN_EXTRA);
|
||||
if( out == NULL ) {
|
||||
free(in);
|
||||
(*env)->ThrowNew(env, no_mem, "Unable to allocate heap space for encryption output");
|
||||
return -1;
|
||||
}
|
||||
c_output = ALIGN16(out);
|
||||
|
||||
// step 3: copy data from Java and en/decrypt it
|
||||
if( c_state->cache_len ) {
|
||||
memcpy(c_input, c_state->cache, c_state->cache_len);
|
||||
(*env)->GetByteArrayRegion(env, input, inputOffset, inputLen, (jbyte *)(c_input + c_state->cache_len));
|
||||
} else {
|
||||
(*env)->GetByteArrayRegion(env, input, inputOffset, inputLen, (jbyte *)c_input);
|
||||
}
|
||||
if( c_state->direction == ENCRYPTION )
|
||||
aes_ret = aes_cbc_encrypt(c_input, c_output, outLen, c_state->iv, ENC_CTX(c_state));
|
||||
else
|
||||
aes_ret = aes_cbc_decrypt(c_input, c_output, outLen, c_state->iv, DEC_CTX(c_state));
|
||||
if( aes_ret != EXIT_SUCCESS ) {
|
||||
free(in);
|
||||
free(out);
|
||||
(*env)->ThrowNew(env, bad_arg, "Failed to encrypt input data"); // FIXME: get a better exception class for this...
|
||||
return -1;
|
||||
}
|
||||
(*env)->SetByteArrayRegion(env, output, outputOffset, outLen, (jbyte *)c_output);
|
||||
|
||||
// step 4: cleanup and return
|
||||
if( bytes2cache ) {
|
||||
c_state->cache_len = bytes2cache; // set new cache length
|
||||
memcpy(c_state->cache, (c_input + outLen), bytes2cache); // cache overflow bytes for next call
|
||||
} else {
|
||||
c_state->cache_len = 0;
|
||||
}
|
||||
|
||||
free(in);
|
||||
free(out);
|
||||
|
||||
#if defined(KPD_DEBUG)
|
||||
__android_log_print(ANDROID_LOG_INFO, "kpd_jni.c/nUpdate", "exit: outLen=%d", outLen);
|
||||
#endif
|
||||
|
||||
return outLen;
|
||||
}
|
||||
|
||||
/*
|
||||
outputSize must be at least 32 for encryption since the buffer may contain >= 1 full block
|
||||
outputSize must be at least 16 for decryption
|
||||
*/
|
||||
JNIEXPORT jint JNICALL Java_com_kunzisoft_encrypt_aes_NativeAESCipherSpi_nFinal(JNIEnv *env, jobject this,
|
||||
jlong state, jboolean doPadding, jbyteArray output, jint outputOffset, jint outputSize) {
|
||||
int i;
|
||||
uint32_t padValue, paddedCacheLen;
|
||||
uint8_t final_output[CACHE_SIZE] __attribute__ ((aligned (16)));
|
||||
aes_state *c_state;
|
||||
|
||||
#if defined(KPD_DEBUG)
|
||||
__android_log_print(ANDROID_LOG_INFO, "kpd_jni.c/nFinal", "entry: outputOffset=%d, outputSize=%d", outputOffset, outputSize);
|
||||
#endif
|
||||
|
||||
if( !output || outputOffset < 0 ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "Invalid argument(s) passed to nFinal");
|
||||
return -1;
|
||||
}
|
||||
c_state = (aes_state *)state;
|
||||
if( c_state->direction == FINALIZED ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "This state has already been finalized");
|
||||
return -1;
|
||||
}
|
||||
|
||||
// allow fetching of remaining bytes from cache
|
||||
if( !doPadding ) {
|
||||
(*env)->SetByteArrayRegion(env, output, outputOffset, c_state->cache_len, (jbyte *)c_state->cache);
|
||||
c_state->direction = FINALIZED;
|
||||
return c_state->cache_len;
|
||||
}
|
||||
|
||||
#if defined(KPD_DEBUG)
|
||||
__android_log_print(ANDROID_LOG_INFO, "kpd_jni.c/nFinal", "crypto operation starts");
|
||||
#endif
|
||||
|
||||
if( c_state->direction == ENCRYPTION ) {
|
||||
if( c_state->cache_len >= 16 ) {
|
||||
paddedCacheLen = 32;
|
||||
} else {
|
||||
paddedCacheLen = 16;
|
||||
}
|
||||
if( outputSize < (jint)paddedCacheLen ) {
|
||||
(*env)->ThrowNew(env, short_buf, "Insufficient space in output buffer");
|
||||
return -1;
|
||||
}
|
||||
padValue = paddedCacheLen - c_state->cache_len;
|
||||
if(!padValue) padValue = 16;
|
||||
memset(c_state->cache + c_state->cache_len, padValue, padValue);
|
||||
if( aes_cbc_encrypt(c_state->cache, final_output, paddedCacheLen, c_state->iv, ENC_CTX(c_state)) != EXIT_SUCCESS ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "Failed to encrypt the final data block(s)"); // FIXME: get a better exception class for this...
|
||||
return -1;
|
||||
}
|
||||
(*env)->SetByteArrayRegion(env, output, outputOffset, paddedCacheLen, (jbyte *)final_output);
|
||||
c_state->direction = FINALIZED;
|
||||
#if defined(KPD_DEBUG)
|
||||
__android_log_print(ANDROID_LOG_INFO, "kpd_jni.c/nFinal", "encryption operation completed, returning %d bytes", paddedCacheLen);
|
||||
#endif
|
||||
return paddedCacheLen;
|
||||
} else { // DECRYPTION
|
||||
|
||||
paddedCacheLen = c_state->cache_len;
|
||||
if( outputSize < (jint)paddedCacheLen ) {
|
||||
(*env)->ThrowNew(env, short_buf, "Insufficient space in output buffer");
|
||||
return -1;
|
||||
}
|
||||
if( paddedCacheLen != AES_BLOCK_SIZE ) {
|
||||
(*env)->ThrowNew(env, bad_padding, "Incomplete final block in cache for decryption state");
|
||||
return -1;
|
||||
}
|
||||
if( aes_cbc_decrypt(c_state->cache, final_output, paddedCacheLen, c_state->iv, DEC_CTX(c_state)) != EXIT_SUCCESS ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "Failed to decrypt the final data block(s)"); // FIXME: get a better exception class for this...
|
||||
return -1;
|
||||
}
|
||||
padValue = final_output[paddedCacheLen-1];
|
||||
|
||||
int badPadding;
|
||||
badPadding = padValue > AES_BLOCK_SIZE;
|
||||
|
||||
if (!badPadding) {
|
||||
for(i = paddedCacheLen-1; final_output[i] == padValue && i >= 0; i--) {
|
||||
if (final_output[i] != padValue) {
|
||||
badPadding = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#if defined(KPD_DEBUG)
|
||||
__android_log_print(ANDROID_LOG_INFO, "kpd_jni.c/nFinal", "padValue=%d", padValue);
|
||||
#endif
|
||||
if( badPadding ) {
|
||||
(*env)->ThrowNew(env, bad_padding, "Failed to verify padding during decryption");
|
||||
return -1;
|
||||
}
|
||||
|
||||
int outputSize = AES_BLOCK_SIZE - padValue;
|
||||
|
||||
(*env)->SetByteArrayRegion(env, output, outputOffset, outputSize, (jbyte *)final_output);
|
||||
c_state->direction = FINALIZED;
|
||||
#if defined(KPD_DEBUG)
|
||||
__android_log_print(ANDROID_LOG_INFO, "kpd_jni.c/nFinal", "decryption operation completed, returning %d bytes", outputSize);
|
||||
#endif
|
||||
return outputSize;
|
||||
}
|
||||
}
|
||||
|
||||
JNIEXPORT jint JNICALL Java_com_kunzisoft_encrypt_aes_NativeAESCipherSpi_nGetCacheSize(JNIEnv* env, jobject this, jlong state) {
|
||||
aes_state *c_state;
|
||||
|
||||
c_state = (aes_state *)state;
|
||||
if( c_state->direction == FINALIZED ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "Invalid state");
|
||||
return -1;
|
||||
}
|
||||
return c_state->cache_len;
|
||||
}
|
||||
|
||||
#define MASTER_KEY_SIZE 32
|
||||
|
||||
typedef struct _master_key {
|
||||
uint64_t rounds;
|
||||
uint32_t done[2];
|
||||
pthread_mutex_t lock1, lock2; // these lock the two halves of the key material
|
||||
uint8_t c_seed[MASTER_KEY_SIZE] __attribute__ ((aligned (16)));
|
||||
uint8_t key1[MASTER_KEY_SIZE] __attribute__ ((aligned (16)));
|
||||
uint8_t key2[MASTER_KEY_SIZE] __attribute__ ((aligned (16)));
|
||||
} master_key;
|
||||
|
||||
|
||||
uint32_t generate_key_material(void *arg) {
|
||||
#if defined(KPD_PROFILE)
|
||||
struct timespec start, end;
|
||||
#endif
|
||||
uint32_t i, flip = 0;
|
||||
uint8_t *key1, *key2;
|
||||
master_key *mk = (master_key *)arg;
|
||||
aes_encrypt_ctx e_ctx[1] __attribute__ ((aligned (16)));
|
||||
|
||||
if( mk->done[0] == 0 && pthread_mutex_trylock(&mk->lock1) == 0 ) {
|
||||
key1 = mk->key1;
|
||||
key2 = mk->key2;
|
||||
} else if( mk->done[1] == 0 && pthread_mutex_trylock(&mk->lock2) == 0 ) {
|
||||
key1 = mk->key1 + (MASTER_KEY_SIZE/2);
|
||||
key2 = mk->key2 + (MASTER_KEY_SIZE/2);
|
||||
} else {
|
||||
// this can only be scaled to two threads
|
||||
pthread_exit( (void *)(-1) );
|
||||
}
|
||||
|
||||
#if defined(KPD_PROFILE)
|
||||
clock_gettime(CLOCK_THREAD_CPUTIME_ID, &start);
|
||||
#endif
|
||||
|
||||
aes_encrypt_key256(mk->c_seed, e_ctx);
|
||||
for (i = 0; i < mk->rounds; i++) {
|
||||
if ( flip ) {
|
||||
aes_encrypt(key2, key1, e_ctx);
|
||||
flip = 0;
|
||||
} else {
|
||||
aes_encrypt(key1, key2, e_ctx);
|
||||
flip = 1;
|
||||
}
|
||||
}
|
||||
|
||||
#if defined(KPD_PROFILE)
|
||||
clock_gettime(CLOCK_THREAD_CPUTIME_ID, &end);
|
||||
if( key1 == mk->key1 )
|
||||
__android_log_print(ANDROID_LOG_INFO, "kpd_jni.c/nTransformKey", "Thread 1 master key transformation took ~%d seconds", (end.tv_sec-start.tv_sec));
|
||||
else
|
||||
__android_log_print(ANDROID_LOG_INFO, "kpd_jni.c/nTransformKey", "Thread 2 master key transformation took ~%d seconds", (end.tv_sec-start.tv_sec));
|
||||
#endif
|
||||
|
||||
if( key1 == mk->key1 ) {
|
||||
mk->done[0] = 1;
|
||||
pthread_mutex_unlock(&mk->lock1);
|
||||
} else {
|
||||
mk->done[1] = 1;
|
||||
pthread_mutex_unlock(&mk->lock2);
|
||||
}
|
||||
|
||||
return flip;
|
||||
}
|
||||
|
||||
JNIEXPORT jbyteArray JNICALL Java_com_kunzisoft_encrypt_aes_NativeAESKeyTransformer_nTransformKey(JNIEnv *env, jobject this, jbyteArray seed, jbyteArray key, jlong rounds) {
|
||||
master_key mk;
|
||||
uint32_t flip;
|
||||
pthread_t t1, t2;
|
||||
int iret;
|
||||
void *vret1, *vret2;
|
||||
jbyteArray result;
|
||||
sha256_ctx h_ctx[1] __attribute__ ((aligned (16)));
|
||||
|
||||
// step 1: housekeeping - sanity checks and fetch data from the JVM
|
||||
if( (*env)->GetArrayLength(env, seed) != MASTER_KEY_SIZE ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "TransformMasterKey: the seed is not the correct size");
|
||||
return NULL;
|
||||
}
|
||||
if( (*env)->GetArrayLength(env, key) != MASTER_KEY_SIZE ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "TransformMasterKey: the key is not the correct size");
|
||||
return NULL;
|
||||
}
|
||||
if( rounds < 0 ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "TransformMasterKey: illegal number of encryption rounds");
|
||||
return NULL;
|
||||
}
|
||||
mk.rounds = (uint64_t)rounds;
|
||||
mk.done[0] = mk.done[1] = 0;
|
||||
if( pthread_mutex_init(&mk.lock1, NULL) != 0 ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "TransformMasterKey: failed to initialize the mutex for thread 1"); // FIXME: get a better exception class for this...
|
||||
return NULL;
|
||||
}
|
||||
if( pthread_mutex_init(&mk.lock2, NULL) != 0 ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "TransformMasterKey: failed to initialize the mutex for thread 2"); // FIXME: get a better exception class for this...
|
||||
return NULL;
|
||||
}
|
||||
(*env)->GetByteArrayRegion(env, seed, 0, MASTER_KEY_SIZE, (jbyte *)mk.c_seed);
|
||||
(*env)->GetByteArrayRegion(env, key, 0, MASTER_KEY_SIZE, (jbyte *)mk.key1);
|
||||
|
||||
// step 2: encrypt the hash "rounds"
|
||||
iret = pthread_create( &t1, NULL, (void*)generate_key_material, (void*)&mk );
|
||||
if( iret != 0 ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "TransformMasterKey: failed to launch thread 1"); // FIXME: get a better exception class for this...
|
||||
return NULL;
|
||||
}
|
||||
iret = pthread_create( &t2, NULL, (void*)generate_key_material, (void*)&mk );
|
||||
if( iret != 0 ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "TransformMasterKey: failed to launch thread 2"); // FIXME: get a better exception class for this...
|
||||
return NULL;
|
||||
}
|
||||
iret = pthread_join( t1, &vret1 );
|
||||
if( iret != 0 ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "TransformMasterKey: failed to join thread 1"); // FIXME: get a better exception class for this...
|
||||
return NULL;
|
||||
}
|
||||
iret = pthread_join( t2, &vret2 );
|
||||
if( iret != 0 ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "TransformMasterKey: failed to join thread 2"); // FIXME: get a better exception class for this...
|
||||
return NULL;
|
||||
}
|
||||
if( vret1 == (void *)(-1) || vret2 == (void *)(-1) || vret1 != vret2 ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "TransformMasterKey: invalid flip value(s) from completed thread(s)"); // FIXME: get a better exception class for this...
|
||||
return NULL;
|
||||
} else {
|
||||
flip = (uint32_t)vret1;
|
||||
}
|
||||
|
||||
// step 3: final SHA256 hash
|
||||
sha256_begin(h_ctx);
|
||||
if( flip ) {
|
||||
sha256_hash(mk.key2, MASTER_KEY_SIZE, h_ctx);
|
||||
sha256_end(mk.key1, h_ctx);
|
||||
flip = 0;
|
||||
} else {
|
||||
sha256_hash(mk.key1, MASTER_KEY_SIZE, h_ctx);
|
||||
sha256_end(mk.key2, h_ctx);
|
||||
flip = 1;
|
||||
}
|
||||
|
||||
// step 4: send the hash into the JVM
|
||||
result = (*env)->NewByteArray(env, MASTER_KEY_SIZE);
|
||||
if( flip )
|
||||
(*env)->SetByteArrayRegion(env, result, 0, MASTER_KEY_SIZE, (jbyte *)mk.key2);
|
||||
else
|
||||
(*env)->SetByteArrayRegion(env, result, 0, MASTER_KEY_SIZE, (jbyte *)mk.key1);
|
||||
|
||||
return result;
|
||||
}
|
||||
#undef MASTER_KEY_SIZE
|
||||
9
crypto/src/main/jni/final_key/sha/Android.mk
Normal file
9
crypto/src/main/jni/final_key/sha/Android.mk
Normal file
@@ -0,0 +1,9 @@
|
||||
LOCAL_PATH := $(call my-dir)
|
||||
include $(CLEAR_VARS)
|
||||
LOCAL_MODULE := sha
|
||||
LOCAL_SRC_FILES := \
|
||||
sha1.c \
|
||||
sha2.c \
|
||||
hmac.c
|
||||
LOCAL_EXPORT_C_INCLUDES := $(LOCAL_PATH)
|
||||
include $(BUILD_STATIC_LIBRARY)
|
||||
132
crypto/src/main/jni/final_key/sha/brg_endian.h
Normal file
132
crypto/src/main/jni/final_key/sha/brg_endian.h
Normal file
@@ -0,0 +1,132 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2013, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation.
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its operation, including, but not limited to, correctness
|
||||
and fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
*/
|
||||
|
||||
#ifndef _BRG_ENDIAN_H
|
||||
#define _BRG_ENDIAN_H
|
||||
|
||||
#define IS_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */
|
||||
#define IS_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */
|
||||
|
||||
/* This is needed when using clang with MSVC to avoid including */
|
||||
/* endian.h and byteswap.h which are not present on Windows */
|
||||
#if defined( _MSC_VER ) && defined( __clang__ )
|
||||
# undef __GNUC__
|
||||
#endif
|
||||
|
||||
/* Include files where endian defines and byteswap functions may reside */
|
||||
#if defined( __sun )
|
||||
# include <sys/isa_defs.h>
|
||||
#elif defined( __FreeBSD__ ) || defined( __OpenBSD__ ) || defined( __NetBSD__ )
|
||||
# include <sys/endian.h>
|
||||
#elif defined( BSD ) && ( BSD >= 199103 ) || defined( __APPLE__ ) || \
|
||||
defined( __CYGWIN32__ ) || defined( __DJGPP__ ) || defined( __osf__ )
|
||||
# include <machine/endian.h>
|
||||
#elif defined( __linux__ ) || defined( __GNUC__ ) || defined( __GNU_LIBRARY__ )
|
||||
# if !defined( __MINGW32__ ) && !defined( _AIX )
|
||||
# include <endian.h>
|
||||
# if !defined( __BEOS__ )
|
||||
# include <byteswap.h>
|
||||
# endif
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* Now attempt to set the define for platform byte order using any */
|
||||
/* of the four forms SYMBOL, _SYMBOL, __SYMBOL & __SYMBOL__, which */
|
||||
/* seem to encompass most endian symbol definitions */
|
||||
|
||||
#if defined( BIG_ENDIAN ) && defined( LITTLE_ENDIAN )
|
||||
# if defined( BYTE_ORDER ) && BYTE_ORDER == BIG_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined( BYTE_ORDER ) && BYTE_ORDER == LITTLE_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# endif
|
||||
#elif defined( BIG_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#elif defined( LITTLE_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
#if defined( _BIG_ENDIAN ) && defined( _LITTLE_ENDIAN )
|
||||
# if defined( _BYTE_ORDER ) && _BYTE_ORDER == _BIG_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined( _BYTE_ORDER ) && _BYTE_ORDER == _LITTLE_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# endif
|
||||
#elif defined( _BIG_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#elif defined( _LITTLE_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
#if defined( __BIG_ENDIAN ) && defined( __LITTLE_ENDIAN )
|
||||
# if defined( __BYTE_ORDER ) && __BYTE_ORDER == __BIG_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined( __BYTE_ORDER ) && __BYTE_ORDER == __LITTLE_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# endif
|
||||
#elif defined( __BIG_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#elif defined( __LITTLE_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
#if defined( __BIG_ENDIAN__ ) && defined( __LITTLE_ENDIAN__ )
|
||||
# if defined( __BYTE_ORDER__ ) && __BYTE_ORDER__ == __BIG_ENDIAN__
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined( __BYTE_ORDER__ ) && __BYTE_ORDER__ == __LITTLE_ENDIAN__
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# endif
|
||||
#elif defined( __BIG_ENDIAN__ )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#elif defined( __LITTLE_ENDIAN__ )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
/* if the platform byte order could not be determined, then try to */
|
||||
/* set this define using common machine defines */
|
||||
#if !defined(PLATFORM_BYTE_ORDER)
|
||||
|
||||
#if defined( __alpha__ ) || defined( __alpha ) || defined( i386 ) || \
|
||||
defined( __i386__ ) || defined( _M_I86 ) || defined( _M_IX86 ) || \
|
||||
defined( __OS2__ ) || defined( sun386 ) || defined( __TURBOC__ ) || \
|
||||
defined( vax ) || defined( vms ) || defined( VMS ) || \
|
||||
defined( __VMS ) || defined( _M_X64 )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
|
||||
#elif defined( AMIGA ) || defined( applec ) || defined( __AS400__ ) || \
|
||||
defined( _CRAY ) || defined( __hppa ) || defined( __hp9000 ) || \
|
||||
defined( ibm370 ) || defined( mc68000 ) || defined( m68k ) || \
|
||||
defined( __MRC__ ) || defined( __MVS__ ) || defined( __MWERKS__ ) || \
|
||||
defined( sparc ) || defined( __sparc) || defined( SYMANTEC_C ) || \
|
||||
defined( __VOS__ ) || defined( __TIGCC__ ) || defined( __TANDEM ) || \
|
||||
defined( THINK_C ) || defined( __VMCMS__ ) || defined( _AIX )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
|
||||
#elif 0 /* **** EDIT HERE IF NECESSARY **** */
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#elif 0 /* **** EDIT HERE IF NECESSARY **** */
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#else
|
||||
# error Please edit lines 126 or 128 in brg_endian.h to set the platform byte order
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
217
crypto/src/main/jni/final_key/sha/brg_types.h
Normal file
217
crypto/src/main/jni/final_key/sha/brg_types.h
Normal file
@@ -0,0 +1,217 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2013, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation.
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its operation, including, but not limited to, correctness
|
||||
and fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 30/09/2017
|
||||
*/
|
||||
|
||||
#ifndef _BRG_TYPES_H
|
||||
#define _BRG_TYPES_H
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include <limits.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#if defined( _MSC_VER ) && ( _MSC_VER >= 1300 )
|
||||
# include <stddef.h>
|
||||
# define ptrint_t intptr_t
|
||||
#elif defined( __ECOS__ )
|
||||
# define intptr_t unsigned int
|
||||
# define ptrint_t intptr_t
|
||||
#elif defined( __GNUC__ ) && ( __GNUC__ >= 3 ) && !(defined( __HAIKU__ ) || defined( __VxWorks__ ))
|
||||
# define ptrint_t intptr_t
|
||||
#else
|
||||
# define ptrint_t int
|
||||
#endif
|
||||
|
||||
/* define unsigned 8-bit type if not available in stdint.h */
|
||||
#if !defined(UINT8_MAX)
|
||||
typedef unsigned char uint8_t;
|
||||
#endif
|
||||
|
||||
/* define unsigned 16-bit type if not available in stdint.h */
|
||||
#if !defined(UINT16_MAX)
|
||||
typedef unsigned short uint16_t;
|
||||
#endif
|
||||
|
||||
/* define unsigned 32-bit type if not available in stdint.h and define the
|
||||
macro li_32(h) which converts a sequence of eight hexadecimal characters
|
||||
into a 32 bit constant
|
||||
*/
|
||||
#if defined(UINT_MAX) && UINT_MAX == 4294967295u
|
||||
# define li_32(h) 0x##h##u
|
||||
# if !defined(UINT32_MAX)
|
||||
typedef unsigned int uint32_t;
|
||||
# endif
|
||||
#elif defined(ULONG_MAX) && ULONG_MAX == 4294967295u
|
||||
# define li_32(h) 0x##h##ul
|
||||
# if !defined(UINT32_MAX)
|
||||
typedef unsigned long uint32_t;
|
||||
# endif
|
||||
#elif defined( _CRAY )
|
||||
# error This code needs 32-bit data types, which Cray machines do not provide
|
||||
#else
|
||||
# error Please define uint32_t as a 32-bit unsigned integer type in brg_types.h
|
||||
#endif
|
||||
|
||||
/* define unsigned 64-bit type if not available in stdint.h and define the
|
||||
macro li_64(h) which converts a sequence of eight hexadecimal characters
|
||||
into a 64 bit constant
|
||||
*/
|
||||
#if defined( __BORLANDC__ ) && !defined( __MSDOS__ )
|
||||
# define li_64(h) 0x##h##ui64
|
||||
# if !defined(UINT64_MAX)
|
||||
typedef unsigned __int64 uint64_t;
|
||||
# endif
|
||||
#elif defined( _MSC_VER ) && ( _MSC_VER < 1300 ) /* 1300 == VC++ 7.0 */
|
||||
# define li_64(h) 0x##h##ui64
|
||||
# if !defined(UINT64_MAX)
|
||||
typedef unsigned __int64 uint64_t;
|
||||
# endif
|
||||
#elif defined( __sun ) && defined( ULONG_MAX ) && ULONG_MAX == 0xfffffffful
|
||||
# define li_64(h) 0x##h##ull
|
||||
# if !defined(UINT64_MAX)
|
||||
typedef unsigned long long uint64_t;
|
||||
# endif
|
||||
#elif defined( __MVS__ )
|
||||
# define li_64(h) 0x##h##ull
|
||||
# if !defined(UINT64_MAX)
|
||||
typedef unsigned long long uint64_t;
|
||||
# endif
|
||||
#elif defined( UINT_MAX ) && UINT_MAX > 4294967295u
|
||||
# if UINT_MAX == 18446744073709551615u
|
||||
# define li_64(h) 0x##h##u
|
||||
# if !defined(UINT64_MAX)
|
||||
typedef unsigned int uint64_t;
|
||||
# endif
|
||||
# endif
|
||||
#elif defined( ULONG_MAX ) && ULONG_MAX > 4294967295u
|
||||
# if ULONG_MAX == 18446744073709551615ul
|
||||
# define li_64(h) 0x##h##ul
|
||||
# if !defined(UINT64_MAX) && !defined(_UINT64_T)
|
||||
typedef unsigned long uint64_t;
|
||||
# endif
|
||||
# endif
|
||||
#elif defined( ULLONG_MAX ) && ULLONG_MAX > 4294967295u
|
||||
# if ULLONG_MAX == 18446744073709551615ull
|
||||
# define li_64(h) 0x##h##ull
|
||||
# if !defined(UINT64_MAX) && !defined( __HAIKU__ )
|
||||
typedef unsigned long long uint64_t;
|
||||
# endif
|
||||
# endif
|
||||
#elif defined( ULONG_LONG_MAX ) && ULONG_LONG_MAX > 4294967295u
|
||||
# if ULONG_LONG_MAX == 18446744073709551615ull
|
||||
# define li_64(h) 0x##h##ull
|
||||
# if !defined(UINT64_MAX)
|
||||
typedef unsigned long long uint64_t;
|
||||
# endif
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if !defined( li_64 )
|
||||
# if defined( NEED_UINT_64T )
|
||||
# error Please define uint64_t as an unsigned 64 bit type in brg_types.h
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef RETURN_VALUES
|
||||
# define RETURN_VALUES
|
||||
# if defined( DLL_EXPORT )
|
||||
# if defined( _MSC_VER ) || defined ( __INTEL_COMPILER )
|
||||
# define VOID_RETURN __declspec( dllexport ) void __stdcall
|
||||
# define INT_RETURN __declspec( dllexport ) int __stdcall
|
||||
# elif defined( __GNUC__ )
|
||||
# define VOID_RETURN __declspec( __dllexport__ ) void
|
||||
# define INT_RETURN __declspec( __dllexport__ ) int
|
||||
# else
|
||||
# error Use of the DLL is only available on the Microsoft, Intel and GCC compilers
|
||||
# endif
|
||||
# elif defined( DLL_IMPORT )
|
||||
# if defined( _MSC_VER ) || defined ( __INTEL_COMPILER )
|
||||
# define VOID_RETURN __declspec( dllimport ) void __stdcall
|
||||
# define INT_RETURN __declspec( dllimport ) int __stdcall
|
||||
# elif defined( __GNUC__ )
|
||||
# define VOID_RETURN __declspec( __dllimport__ ) void
|
||||
# define INT_RETURN __declspec( __dllimport__ ) int
|
||||
# else
|
||||
# error Use of the DLL is only available on the Microsoft, Intel and GCC compilers
|
||||
# endif
|
||||
# elif defined( __WATCOMC__ )
|
||||
# define VOID_RETURN void __cdecl
|
||||
# define INT_RETURN int __cdecl
|
||||
# else
|
||||
# define VOID_RETURN void
|
||||
# define INT_RETURN int
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* These defines are used to detect and set the memory alignment of pointers.
|
||||
Note that offsets are in bytes.
|
||||
|
||||
ALIGN_OFFSET(x,n) return the positive or zero offset of
|
||||
the memory addressed by the pointer 'x'
|
||||
from an address that is aligned on an
|
||||
'n' byte boundary ('n' is a power of 2)
|
||||
|
||||
ALIGN_FLOOR(x,n) return a pointer that points to memory
|
||||
that is aligned on an 'n' byte boundary
|
||||
and is not higher than the memory address
|
||||
pointed to by 'x' ('n' is a power of 2)
|
||||
|
||||
ALIGN_CEIL(x,n) return a pointer that points to memory
|
||||
that is aligned on an 'n' byte boundary
|
||||
and is not lower than the memory address
|
||||
pointed to by 'x' ('n' is a power of 2)
|
||||
*/
|
||||
|
||||
#define ALIGN_OFFSET(x,n) (((ptrint_t)(x)) & ((n) - 1))
|
||||
#define ALIGN_FLOOR(x,n) ((uint8_t*)(x) - ( ((ptrint_t)(x)) & ((n) - 1)))
|
||||
#define ALIGN_CEIL(x,n) ((uint8_t*)(x) + (-((ptrint_t)(x)) & ((n) - 1)))
|
||||
|
||||
/* These defines are used to declare buffers in a way that allows
|
||||
faster operations on longer variables to be used. In all these
|
||||
defines 'size' must be a power of 2 and >= 8. NOTE that the
|
||||
buffer size is in bytes but the type length is in bits
|
||||
|
||||
UNIT_TYPEDEF(x,size) declares a variable 'x' of length
|
||||
'size' bits
|
||||
|
||||
BUFR_TYPEDEF(x,size,bsize) declares a buffer 'x' of length 'bsize'
|
||||
bytes defined as an array of variables
|
||||
each of 'size' bits (bsize must be a
|
||||
multiple of size / 8)
|
||||
|
||||
UNIT_CAST(x,size) casts a variable to a type of
|
||||
length 'size' bits
|
||||
|
||||
UPTR_CAST(x,size) casts a pointer to a pointer to a
|
||||
variable of length 'size' bits
|
||||
*/
|
||||
|
||||
#define UI_TYPE(size) uint##size##_t
|
||||
#define UNIT_TYPEDEF(x,size) typedef UI_TYPE(size) x
|
||||
#define BUFR_TYPEDEF(x,size,bsize) typedef UI_TYPE(size) x[bsize / (size >> 3)]
|
||||
#define UNIT_CAST(x,size) ((UI_TYPE(size) )(x))
|
||||
#define UPTR_CAST(x,size) ((UI_TYPE(size)*)(x))
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
209
crypto/src/main/jni/final_key/sha/hmac.c
Normal file
209
crypto/src/main/jni/final_key/sha/hmac.c
Normal file
@@ -0,0 +1,209 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2010, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation.
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its operation, including, but not limited to, correctness
|
||||
and fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
|
||||
This is an implementation of HMAC, the FIPS standard keyed hash function
|
||||
*/
|
||||
|
||||
#include "hmac.h"
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
/* initialise the HMAC context to zero */
|
||||
int hmac_sha_begin(enum hmac_hash hash, hmac_ctx cx[1])
|
||||
{
|
||||
memset(cx, 0, sizeof(hmac_ctx));
|
||||
switch(hash)
|
||||
{
|
||||
#ifdef SHA_1
|
||||
case HMAC_SHA1:
|
||||
cx->f_begin = sha1_begin;
|
||||
cx->f_hash = sha1_hash;
|
||||
cx->f_end = sha1_end;
|
||||
cx->input_len = SHA1_BLOCK_SIZE;
|
||||
cx->output_len = SHA1_DIGEST_SIZE;
|
||||
break;
|
||||
#endif
|
||||
#ifdef SHA_224
|
||||
case HMAC_SHA224:
|
||||
cx->f_begin = sha224_begin;
|
||||
cx->f_hash = sha224_hash;
|
||||
cx->f_end = sha224_end;
|
||||
cx->input_len = SHA224_BLOCK_SIZE;
|
||||
cx->output_len = SHA224_DIGEST_SIZE;
|
||||
break;
|
||||
#endif
|
||||
#ifdef SHA_256
|
||||
case HMAC_SHA256:
|
||||
cx->f_begin = sha256_begin;
|
||||
cx->f_hash = sha256_hash;
|
||||
cx->f_end = sha256_end;
|
||||
cx->input_len = SHA256_BLOCK_SIZE;
|
||||
cx->output_len = SHA256_DIGEST_SIZE;
|
||||
break;
|
||||
#endif
|
||||
#ifdef SHA_384
|
||||
case HMAC_SHA384:
|
||||
cx->f_begin = sha384_begin;
|
||||
cx->f_hash = sha384_hash;
|
||||
cx->f_end = sha384_end;
|
||||
cx->input_len = SHA384_BLOCK_SIZE;
|
||||
cx->output_len = SHA384_DIGEST_SIZE;
|
||||
break;
|
||||
#endif
|
||||
#ifdef SHA_512
|
||||
case HMAC_SHA512:
|
||||
cx->f_begin = sha512_begin;
|
||||
cx->f_hash = sha512_hash;
|
||||
cx->f_end = sha512_end;
|
||||
cx->input_len = SHA512_BLOCK_SIZE;
|
||||
cx->output_len = SHA512_DIGEST_SIZE;
|
||||
break;
|
||||
case HMAC_SHA512_256:
|
||||
cx->f_begin = sha512_256_begin;
|
||||
cx->f_hash = sha512_256_hash;
|
||||
cx->f_end = sha512_256_end;
|
||||
cx->input_len = SHA512_256_BLOCK_SIZE;
|
||||
cx->output_len = SHA512_256_DIGEST_SIZE;
|
||||
break;
|
||||
case HMAC_SHA512_224:
|
||||
cx->f_begin = sha512_224_begin;
|
||||
cx->f_hash = sha512_224_hash;
|
||||
cx->f_end = sha512_224_end;
|
||||
cx->input_len = SHA512_224_BLOCK_SIZE;
|
||||
cx->output_len = SHA512_224_DIGEST_SIZE;
|
||||
break;
|
||||
case HMAC_SHA512_192:
|
||||
cx->f_begin = sha512_192_begin;
|
||||
cx->f_hash = sha512_192_hash;
|
||||
cx->f_end = sha512_192_end;
|
||||
cx->input_len = SHA512_192_BLOCK_SIZE;
|
||||
cx->output_len = SHA512_192_DIGEST_SIZE;
|
||||
break;
|
||||
case HMAC_SHA512_128:
|
||||
cx->f_begin = sha512_128_begin;
|
||||
cx->f_hash = sha512_128_hash;
|
||||
cx->f_end = sha512_128_end;
|
||||
cx->input_len = SHA512_128_BLOCK_SIZE;
|
||||
cx->output_len = SHA512_128_DIGEST_SIZE;
|
||||
break;
|
||||
#endif
|
||||
}
|
||||
return cx->output_len;
|
||||
}
|
||||
|
||||
/* input the HMAC key (can be called multiple times) */
|
||||
int hmac_sha_key(const unsigned char key[], unsigned long key_len, hmac_ctx cx[1])
|
||||
{
|
||||
if(cx->klen == HMAC_IN_DATA) /* error if further key input */
|
||||
return EXIT_FAILURE; /* is attempted in data mode */
|
||||
|
||||
if(cx->klen + key_len > cx->input_len) /* if the key has to be hashed */
|
||||
{
|
||||
if(cx->klen <= cx->input_len) /* if the hash has not yet been */
|
||||
{ /* started, initialise it and */
|
||||
cx->f_begin(cx->sha_ctx); /* hash stored key characters */
|
||||
cx->f_hash(cx->key, cx->klen, cx->sha_ctx);
|
||||
}
|
||||
|
||||
cx->f_hash(key, key_len, cx->sha_ctx); /* hash long key data into hash */
|
||||
}
|
||||
else /* otherwise store key data */
|
||||
memcpy(cx->key + cx->klen, key, key_len);
|
||||
|
||||
cx->klen += key_len; /* update the key length count */
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
/* input the HMAC data (can be called multiple times) - */
|
||||
/* note that this call terminates the key input phase */
|
||||
void hmac_sha_data(const unsigned char data[], unsigned long data_len, hmac_ctx cx[1])
|
||||
{ unsigned int i;
|
||||
|
||||
if(cx->klen != HMAC_IN_DATA) /* if not yet in data phase */
|
||||
{
|
||||
if(cx->klen > cx->input_len) /* if key is being hashed */
|
||||
{ /* complete the hash and */
|
||||
cx->f_end(cx->key, cx->sha_ctx); /* store the result as the */
|
||||
cx->klen = cx->output_len; /* key and set new length */
|
||||
}
|
||||
|
||||
/* pad the key if necessary */
|
||||
memset(cx->key + cx->klen, 0, cx->input_len - cx->klen);
|
||||
|
||||
/* xor ipad into key value */
|
||||
for(i = 0; i < (cx->input_len >> 2); ++i)
|
||||
((uint32_t*)cx->key)[i] ^= 0x36363636;
|
||||
|
||||
/* and start hash operation */
|
||||
cx->f_begin(cx->sha_ctx);
|
||||
cx->f_hash(cx->key, cx->input_len, cx->sha_ctx);
|
||||
|
||||
/* mark as now in data mode */
|
||||
cx->klen = HMAC_IN_DATA;
|
||||
}
|
||||
|
||||
/* hash the data (if any) */
|
||||
if(data_len)
|
||||
cx->f_hash(data, data_len, cx->sha_ctx);
|
||||
}
|
||||
|
||||
/* compute and output the MAC value */
|
||||
void hmac_sha_end(unsigned char mac[], unsigned long mac_len, hmac_ctx cx[1])
|
||||
{ unsigned char dig[HMAC_MAX_OUTPUT_SIZE];
|
||||
unsigned int i;
|
||||
|
||||
/* if no data has been entered perform a null data phase */
|
||||
if(cx->klen != HMAC_IN_DATA)
|
||||
hmac_sha_data((const unsigned char*)0, 0, cx);
|
||||
|
||||
cx->f_end(dig, cx->sha_ctx); /* complete the inner hash */
|
||||
|
||||
/* set outer key value using opad and removing ipad */
|
||||
for(i = 0; i < (cx->input_len >> 2); ++i)
|
||||
((uint32_t*)cx->key)[i] ^= 0x36363636 ^ 0x5c5c5c5c;
|
||||
|
||||
/* perform the outer hash operation */
|
||||
cx->f_begin(cx->sha_ctx);
|
||||
cx->f_hash(cx->key, cx->input_len, cx->sha_ctx);
|
||||
cx->f_hash(dig, cx->output_len, cx->sha_ctx);
|
||||
cx->f_end(dig, cx->sha_ctx);
|
||||
|
||||
/* output the hash value */
|
||||
for(i = 0; i < mac_len; ++i)
|
||||
mac[i] = dig[i];
|
||||
}
|
||||
|
||||
/* 'do it all in one go' subroutine */
|
||||
void hmac_sha(enum hmac_hash hash, const unsigned char key[], unsigned long key_len,
|
||||
const unsigned char data[], unsigned long data_len,
|
||||
unsigned char mac[], unsigned long mac_len)
|
||||
{ hmac_ctx cx[1];
|
||||
|
||||
hmac_sha_begin(hash, cx);
|
||||
hmac_sha_key(key, key_len, cx);
|
||||
hmac_sha_data(data, data_len, cx);
|
||||
hmac_sha_end(mac, mac_len, cx);
|
||||
}
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
129
crypto/src/main/jni/final_key/sha/hmac.h
Normal file
129
crypto/src/main/jni/final_key/sha/hmac.h
Normal file
@@ -0,0 +1,129 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2010, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation.
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its operation, including, but not limited to, correctness
|
||||
and fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
|
||||
This is an implementation of HMAC, the FIPS standard keyed hash function
|
||||
*/
|
||||
|
||||
#ifndef _HMAC2_H
|
||||
#define _HMAC2_H
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <memory.h>
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#if !defined(_SHA1_H)
|
||||
# include "sha1.h"
|
||||
#endif
|
||||
|
||||
#if !defined(_SHA2_H)
|
||||
# include "sha2.h"
|
||||
#endif
|
||||
|
||||
#if !defined(_SHA2_H)
|
||||
#define HMAC_BLOCK_SIZE SHA1_BLOCK_SIZE
|
||||
#define HMAC_MAX_OUTPUT_SIZE SHA1_DIGEST_SIZE
|
||||
#else
|
||||
#define HMAC_BLOCK_SIZE SHA2_MAX_BLOCK_SIZE
|
||||
#define HMAC_MAX_OUTPUT_SIZE SHA2_MAX_DIGEST_SIZE
|
||||
#endif
|
||||
|
||||
#define HMAC_IN_DATA 0xffffffff
|
||||
|
||||
enum hmac_hash
|
||||
{
|
||||
#ifdef _SHA1_H
|
||||
HMAC_SHA1,
|
||||
#endif
|
||||
#ifdef _SHA2_H
|
||||
# ifdef SHA_224
|
||||
HMAC_SHA224,
|
||||
# endif
|
||||
# ifdef SHA_256
|
||||
HMAC_SHA256,
|
||||
# endif
|
||||
# ifdef SHA_384
|
||||
HMAC_SHA384,
|
||||
# endif
|
||||
# ifdef SHA_512
|
||||
HMAC_SHA512,
|
||||
HMAC_SHA512_256,
|
||||
HMAC_SHA512_224,
|
||||
HMAC_SHA512_192,
|
||||
HMAC_SHA512_128
|
||||
# endif
|
||||
#endif
|
||||
};
|
||||
|
||||
typedef VOID_RETURN hf_begin(void*);
|
||||
typedef VOID_RETURN hf_hash(const void*, unsigned long len, void*);
|
||||
typedef VOID_RETURN hf_end(void*, void*);
|
||||
|
||||
typedef struct
|
||||
{ hf_begin *f_begin;
|
||||
hf_hash *f_hash;
|
||||
hf_end *f_end;
|
||||
unsigned char key[HMAC_BLOCK_SIZE];
|
||||
union
|
||||
{
|
||||
#ifdef _SHA1_H
|
||||
sha1_ctx u_sha1;
|
||||
#endif
|
||||
#ifdef _SHA2_H
|
||||
# ifdef SHA_224
|
||||
sha224_ctx u_sha224;
|
||||
# endif
|
||||
# ifdef SHA_256
|
||||
sha256_ctx u_sha256;
|
||||
# endif
|
||||
# ifdef SHA_384
|
||||
sha384_ctx u_sha384;
|
||||
# endif
|
||||
# ifdef SHA_512
|
||||
sha512_ctx u_sha512;
|
||||
# endif
|
||||
#endif
|
||||
} sha_ctx[1];
|
||||
unsigned long input_len;
|
||||
unsigned long output_len;
|
||||
unsigned long klen;
|
||||
} hmac_ctx;
|
||||
|
||||
/* returns the length of hash digest for the hash used */
|
||||
/* mac_len must not be greater than this */
|
||||
int hmac_sha_begin(enum hmac_hash hash, hmac_ctx cx[1]);
|
||||
|
||||
int hmac_sha_key(const unsigned char key[], unsigned long key_len, hmac_ctx cx[1]);
|
||||
|
||||
void hmac_sha_data(const unsigned char data[], unsigned long data_len, hmac_ctx cx[1]);
|
||||
|
||||
void hmac_sha_end(unsigned char mac[], unsigned long mac_len, hmac_ctx cx[1]);
|
||||
|
||||
void hmac_sha(enum hmac_hash hash, const unsigned char key[], unsigned long key_len,
|
||||
const unsigned char data[], unsigned long data_len,
|
||||
unsigned char mac[], unsigned long mac_len);
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
181
crypto/src/main/jni/final_key/sha/pwd2key.c
Normal file
181
crypto/src/main/jni/final_key/sha/pwd2key.c
Normal file
@@ -0,0 +1,181 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2010, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation.
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its operation, including, but not limited to, correctness
|
||||
and fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
|
||||
This is an implementation of RFC2898, which specifies key derivation from
|
||||
a password and a salt value.
|
||||
*/
|
||||
|
||||
#include <memory.h>
|
||||
#include "hmac.h"
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
void derive_key(const unsigned char pwd[], /* the PASSWORD */
|
||||
unsigned int pwd_len, /* and its length */
|
||||
const unsigned char salt[], /* the SALT and its */
|
||||
unsigned int salt_len, /* length */
|
||||
unsigned int iter, /* the number of iterations */
|
||||
unsigned char key[], /* space for the output key */
|
||||
unsigned int key_len)/* and its required length */
|
||||
{
|
||||
unsigned int i, j, k, n_blk, h_size;
|
||||
unsigned char uu[HMAC_MAX_OUTPUT_SIZE], ux[HMAC_MAX_OUTPUT_SIZE];
|
||||
hmac_ctx c1[1], c2[1], c3[1];
|
||||
|
||||
/* set HMAC context (c1) for password */
|
||||
h_size = hmac_sha_begin(HMAC_SHA1, c1);
|
||||
hmac_sha_key(pwd, pwd_len, c1);
|
||||
|
||||
/* set HMAC context (c2) for password and salt */
|
||||
memcpy(c2, c1, sizeof(hmac_ctx));
|
||||
hmac_sha_data(salt, salt_len, c2);
|
||||
|
||||
/* find the number of SHA blocks in the key */
|
||||
n_blk = 1 + (key_len - 1) / h_size;
|
||||
|
||||
for(i = 0; i < n_blk; ++i) /* for each block in key */
|
||||
{
|
||||
/* ux[] holds the running xor value */
|
||||
memset(ux, 0, h_size);
|
||||
|
||||
/* set HMAC context (c3) for password and salt */
|
||||
memcpy(c3, c2, sizeof(hmac_ctx));
|
||||
|
||||
/* enter additional data for 1st block into uu */
|
||||
uu[0] = (unsigned char)((i + 1) >> 24);
|
||||
uu[1] = (unsigned char)((i + 1) >> 16);
|
||||
uu[2] = (unsigned char)((i + 1) >> 8);
|
||||
uu[3] = (unsigned char)(i + 1);
|
||||
|
||||
/* this is the key mixing iteration */
|
||||
for(j = 0, k = 4; j < iter; ++j)
|
||||
{
|
||||
/* add previous round data to HMAC */
|
||||
hmac_sha_data(uu, k, c3);
|
||||
|
||||
/* obtain HMAC for uu[] */
|
||||
hmac_sha_end(uu, h_size, c3);
|
||||
|
||||
/* xor into the running xor block */
|
||||
for(k = 0; k < h_size; ++k)
|
||||
ux[k] ^= uu[k];
|
||||
|
||||
/* set HMAC context (c3) for password */
|
||||
memcpy(c3, c1, sizeof(hmac_ctx));
|
||||
}
|
||||
|
||||
/* compile key blocks into the key output */
|
||||
j = 0; k = i * h_size;
|
||||
while(j < h_size && k < key_len)
|
||||
key[k++] = ux[j++];
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef TEST
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
struct
|
||||
{ unsigned int pwd_len;
|
||||
unsigned int salt_len;
|
||||
unsigned int it_count;
|
||||
unsigned char *pwd;
|
||||
unsigned char salt[32];
|
||||
unsigned char key[32];
|
||||
} tests[] =
|
||||
{
|
||||
{ 8, 4, 5, (unsigned char*)"password",
|
||||
{
|
||||
0x12, 0x34, 0x56, 0x78
|
||||
},
|
||||
{
|
||||
0x5c, 0x75, 0xce, 0xf0, 0x1a, 0x96, 0x0d, 0xf7,
|
||||
0x4c, 0xb6, 0xb4, 0x9b, 0x9e, 0x38, 0xe6, 0xb5
|
||||
}
|
||||
},
|
||||
{ 8, 8, 5, (unsigned char*)"password",
|
||||
{
|
||||
0x12, 0x34, 0x56, 0x78, 0x78, 0x56, 0x34, 0x12
|
||||
},
|
||||
{
|
||||
0xd1, 0xda, 0xa7, 0x86, 0x15, 0xf2, 0x87, 0xe6,
|
||||
0xa1, 0xc8, 0xb1, 0x20, 0xd7, 0x06, 0x2a, 0x49
|
||||
}
|
||||
},
|
||||
{ 8, 21, 1, (unsigned char*)"password",
|
||||
{
|
||||
"ATHENA.MIT.EDUraeburn"
|
||||
},
|
||||
{
|
||||
0xcd, 0xed, 0xb5, 0x28, 0x1b, 0xb2, 0xf8, 0x01,
|
||||
0x56, 0x5a, 0x11, 0x22, 0xb2, 0x56, 0x35, 0x15
|
||||
}
|
||||
},
|
||||
{ 8, 21, 2, (unsigned char*)"password",
|
||||
{
|
||||
"ATHENA.MIT.EDUraeburn"
|
||||
},
|
||||
{
|
||||
0x01, 0xdb, 0xee, 0x7f, 0x4a, 0x9e, 0x24, 0x3e,
|
||||
0x98, 0x8b, 0x62, 0xc7, 0x3c, 0xda, 0x93, 0x5d
|
||||
}
|
||||
},
|
||||
{ 8, 21, 1200, (unsigned char*)"password",
|
||||
{
|
||||
"ATHENA.MIT.EDUraeburn"
|
||||
},
|
||||
{
|
||||
0x5c, 0x08, 0xeb, 0x61, 0xfd, 0xf7, 0x1e, 0x4e,
|
||||
0x4e, 0xc3, 0xcf, 0x6b, 0xa1, 0xf5, 0x51, 0x2b
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
int main()
|
||||
{ unsigned int i, j, key_len = 256;
|
||||
unsigned char key[256];
|
||||
|
||||
printf("\nTest of RFC2898 Password Based Key Derivation");
|
||||
for(i = 0; i < 5; ++i)
|
||||
{
|
||||
derive_key(tests[i].pwd, tests[i].pwd_len, tests[i].salt,
|
||||
tests[i].salt_len, tests[i].it_count, key, key_len);
|
||||
|
||||
printf("\ntest %i: ", i + 1);
|
||||
printf("key %s", memcmp(tests[i].key, key, 16) ? "is bad" : "is good");
|
||||
for(j = 0; j < key_len && j < 64; j += 4)
|
||||
{
|
||||
if(j % 16 == 0)
|
||||
printf("\n");
|
||||
printf("0x%02x%02x%02x%02x ", key[j], key[j + 1], key[j + 2], key[j + 3]);
|
||||
}
|
||||
printf(j < key_len ? " ... \n" : "\n");
|
||||
}
|
||||
printf("\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
45
crypto/src/main/jni/final_key/sha/pwd2key.h
Normal file
45
crypto/src/main/jni/final_key/sha/pwd2key.h
Normal file
@@ -0,0 +1,45 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2010, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation.
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its operation, including, but not limited to, correctness
|
||||
and fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
|
||||
This is an implementation of RFC2898, which specifies key derivation from
|
||||
a password and a salt value.
|
||||
*/
|
||||
|
||||
#ifndef PWD2KEY_H
|
||||
#define PWD2KEY_H
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
void derive_key(
|
||||
const unsigned char pwd[], /* the PASSWORD, and */
|
||||
unsigned int pwd_len, /* its length */
|
||||
const unsigned char salt[], /* the SALT and its */
|
||||
unsigned int salt_len, /* length */
|
||||
unsigned int iter, /* the number of iterations */
|
||||
unsigned char key[], /* space for the output key */
|
||||
unsigned int key_len); /* and its required length */
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
279
crypto/src/main/jni/final_key/sha/sha1.c
Normal file
279
crypto/src/main/jni/final_key/sha/sha1.c
Normal file
@@ -0,0 +1,279 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2010, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation.
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its operation, including, but not limited to, correctness
|
||||
and fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
*/
|
||||
|
||||
#include <string.h> /* for memcpy() etc. */
|
||||
|
||||
#include "sha1.h"
|
||||
#include "brg_endian.h"
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#if defined( _MSC_VER ) && ( _MSC_VER > 800 )
|
||||
#pragma intrinsic(memcpy)
|
||||
#pragma intrinsic(memset)
|
||||
#endif
|
||||
|
||||
#if 0 && defined(_MSC_VER)
|
||||
#define rotl32 _lrotl
|
||||
#define rotr32 _lrotr
|
||||
#else
|
||||
#define rotl32(x,n) (((x) << n) | ((x) >> (32 - n)))
|
||||
#define rotr32(x,n) (((x) >> n) | ((x) << (32 - n)))
|
||||
#endif
|
||||
|
||||
#if !defined(bswap_32)
|
||||
#define bswap_32(x) ((rotr32((x), 24) & 0x00ff00ff) | (rotr32((x), 8) & 0xff00ff00))
|
||||
#endif
|
||||
|
||||
#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN)
|
||||
#define SWAP_BYTES
|
||||
#else
|
||||
#undef SWAP_BYTES
|
||||
#endif
|
||||
|
||||
#if defined(SWAP_BYTES)
|
||||
#define bsw_32(p,n) \
|
||||
{ int _i = (n); while(_i--) ((uint32_t*)p)[_i] = bswap_32(((uint32_t*)p)[_i]); }
|
||||
#else
|
||||
#define bsw_32(p,n)
|
||||
#endif
|
||||
|
||||
#define SHA1_MASK (SHA1_BLOCK_SIZE - 1)
|
||||
|
||||
#if 0
|
||||
|
||||
#define ch(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
|
||||
#define parity(x,y,z) ((x) ^ (y) ^ (z))
|
||||
#define maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
|
||||
|
||||
#else /* Discovered by Rich Schroeppel and Colin Plumb */
|
||||
|
||||
#define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
|
||||
#define parity(x,y,z) ((x) ^ (y) ^ (z))
|
||||
#define maj(x,y,z) (((x) & (y)) | ((z) & ((x) ^ (y))))
|
||||
|
||||
#endif
|
||||
|
||||
/* Compile 64 bytes of hash data into SHA1 context. Note */
|
||||
/* that this routine assumes that the byte order in the */
|
||||
/* ctx->wbuf[] at this point is in such an order that low */
|
||||
/* address bytes in the ORIGINAL byte stream will go in */
|
||||
/* this buffer to the high end of 32-bit words on BOTH big */
|
||||
/* and little endian systems */
|
||||
|
||||
#ifdef ARRAY
|
||||
#define q(v,n) v[n]
|
||||
#else
|
||||
#define q(v,n) v##n
|
||||
#endif
|
||||
|
||||
#define one_cycle(v,a,b,c,d,e,f,k,h) \
|
||||
q(v,e) += rotr32(q(v,a),27) + \
|
||||
f(q(v,b),q(v,c),q(v,d)) + k + h; \
|
||||
q(v,b) = rotr32(q(v,b), 2)
|
||||
|
||||
#define five_cycle(v,f,k,i) \
|
||||
one_cycle(v, 0,1,2,3,4, f,k,hf(i )); \
|
||||
one_cycle(v, 4,0,1,2,3, f,k,hf(i+1)); \
|
||||
one_cycle(v, 3,4,0,1,2, f,k,hf(i+2)); \
|
||||
one_cycle(v, 2,3,4,0,1, f,k,hf(i+3)); \
|
||||
one_cycle(v, 1,2,3,4,0, f,k,hf(i+4))
|
||||
|
||||
VOID_RETURN sha1_compile(sha1_ctx ctx[1])
|
||||
{ uint32_t *w = ctx->wbuf;
|
||||
|
||||
#ifdef ARRAY
|
||||
uint32_t v[5];
|
||||
memcpy(v, ctx->hash, sizeof(ctx->hash));
|
||||
#else
|
||||
uint32_t v0, v1, v2, v3, v4;
|
||||
v0 = ctx->hash[0]; v1 = ctx->hash[1];
|
||||
v2 = ctx->hash[2]; v3 = ctx->hash[3];
|
||||
v4 = ctx->hash[4];
|
||||
#endif
|
||||
|
||||
#define hf(i) w[i]
|
||||
|
||||
five_cycle(v, ch, 0x5a827999, 0);
|
||||
five_cycle(v, ch, 0x5a827999, 5);
|
||||
five_cycle(v, ch, 0x5a827999, 10);
|
||||
one_cycle(v,0,1,2,3,4, ch, 0x5a827999, hf(15)); \
|
||||
|
||||
#undef hf
|
||||
#define hf(i) (w[(i) & 15] = rotl32( \
|
||||
w[((i) + 13) & 15] ^ w[((i) + 8) & 15] \
|
||||
^ w[((i) + 2) & 15] ^ w[(i) & 15], 1))
|
||||
|
||||
one_cycle(v,4,0,1,2,3, ch, 0x5a827999, hf(16));
|
||||
one_cycle(v,3,4,0,1,2, ch, 0x5a827999, hf(17));
|
||||
one_cycle(v,2,3,4,0,1, ch, 0x5a827999, hf(18));
|
||||
one_cycle(v,1,2,3,4,0, ch, 0x5a827999, hf(19));
|
||||
|
||||
five_cycle(v, parity, 0x6ed9eba1, 20);
|
||||
five_cycle(v, parity, 0x6ed9eba1, 25);
|
||||
five_cycle(v, parity, 0x6ed9eba1, 30);
|
||||
five_cycle(v, parity, 0x6ed9eba1, 35);
|
||||
|
||||
five_cycle(v, maj, 0x8f1bbcdc, 40);
|
||||
five_cycle(v, maj, 0x8f1bbcdc, 45);
|
||||
five_cycle(v, maj, 0x8f1bbcdc, 50);
|
||||
five_cycle(v, maj, 0x8f1bbcdc, 55);
|
||||
|
||||
five_cycle(v, parity, 0xca62c1d6, 60);
|
||||
five_cycle(v, parity, 0xca62c1d6, 65);
|
||||
five_cycle(v, parity, 0xca62c1d6, 70);
|
||||
five_cycle(v, parity, 0xca62c1d6, 75);
|
||||
|
||||
#ifdef ARRAY
|
||||
ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
|
||||
ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
|
||||
ctx->hash[4] += v[4];
|
||||
#else
|
||||
ctx->hash[0] += v0; ctx->hash[1] += v1;
|
||||
ctx->hash[2] += v2; ctx->hash[3] += v3;
|
||||
ctx->hash[4] += v4;
|
||||
#endif
|
||||
}
|
||||
|
||||
VOID_RETURN sha1_begin(sha1_ctx ctx[1])
|
||||
{
|
||||
memset(ctx, 0, sizeof(sha1_ctx));
|
||||
ctx->hash[0] = 0x67452301;
|
||||
ctx->hash[1] = 0xefcdab89;
|
||||
ctx->hash[2] = 0x98badcfe;
|
||||
ctx->hash[3] = 0x10325476;
|
||||
ctx->hash[4] = 0xc3d2e1f0;
|
||||
}
|
||||
|
||||
/* SHA1 hash data in an array of bytes into hash buffer and */
|
||||
/* call the hash_compile function as required. For both the */
|
||||
/* bit and byte orientated versions, the block length 'len' */
|
||||
/* must not be greater than 2^32 - 1 bits (2^29 - 1 bytes) */
|
||||
|
||||
VOID_RETURN sha1_hash(const unsigned char data[], unsigned long len, sha1_ctx ctx[1])
|
||||
{ uint32_t pos = (uint32_t)((ctx->count[0] >> 3) & SHA1_MASK);
|
||||
const unsigned char *sp = data;
|
||||
unsigned char *w = (unsigned char*)ctx->wbuf;
|
||||
#if SHA1_BITS == 1
|
||||
uint32_t ofs = (ctx->count[0] & 7);
|
||||
#else
|
||||
len <<= 3;
|
||||
#endif
|
||||
if((ctx->count[0] += len) < len)
|
||||
++(ctx->count[1]);
|
||||
#if SHA1_BITS == 1
|
||||
if(ofs) /* if not on a byte boundary */
|
||||
{
|
||||
if(ofs + len < 8) /* if no added bytes are needed */
|
||||
{
|
||||
w[pos] |= (*sp >> ofs);
|
||||
}
|
||||
else /* otherwise and add bytes */
|
||||
{ unsigned char part = w[pos];
|
||||
|
||||
while((int)(ofs + (len -= 8)) >= 0)
|
||||
{
|
||||
w[pos++] = part | (*sp >> ofs);
|
||||
part = *sp++ << (8 - ofs);
|
||||
if(pos == SHA1_BLOCK_SIZE)
|
||||
{
|
||||
bsw_32(w, SHA1_BLOCK_SIZE >> 2);
|
||||
sha1_compile(ctx); pos = 0;
|
||||
}
|
||||
}
|
||||
|
||||
w[pos] = part;
|
||||
}
|
||||
}
|
||||
else /* data is byte aligned */
|
||||
#endif
|
||||
{ uint32_t space = SHA1_BLOCK_SIZE - pos;
|
||||
|
||||
while(len >= (space << 3))
|
||||
{
|
||||
memcpy(w + pos, sp, space);
|
||||
bsw_32(w, SHA1_BLOCK_SIZE >> 2);
|
||||
sha1_compile(ctx);
|
||||
sp += space; len -= (space << 3);
|
||||
space = SHA1_BLOCK_SIZE; pos = 0;
|
||||
}
|
||||
memcpy(w + pos, sp, (len + 7 * SHA1_BITS) >> 3);
|
||||
}
|
||||
}
|
||||
|
||||
/* SHA1 final padding and digest calculation */
|
||||
|
||||
VOID_RETURN sha1_end(unsigned char hval[], sha1_ctx ctx[1])
|
||||
{ uint32_t i = (uint32_t)((ctx->count[0] >> 3) & SHA1_MASK), m1;
|
||||
|
||||
/* put bytes in the buffer in an order in which references to */
|
||||
/* 32-bit words will put bytes with lower addresses into the */
|
||||
/* top of 32 bit words on BOTH big and little endian machines */
|
||||
bsw_32(ctx->wbuf, (i + 3 + SHA1_BITS) >> 2);
|
||||
|
||||
/* we now need to mask valid bytes and add the padding which is */
|
||||
/* a single 1 bit and as many zero bits as necessary. Note that */
|
||||
/* we can always add the first padding byte here because the */
|
||||
/* buffer always has at least one empty slot */
|
||||
m1 = (unsigned char)0x80 >> (ctx->count[0] & 7);
|
||||
ctx->wbuf[i >> 2] &= ((0xffffff00 | (~m1 + 1)) << 8 * (~i & 3));
|
||||
ctx->wbuf[i >> 2] |= (m1 << 8 * (~i & 3));
|
||||
|
||||
/* we need 9 or more empty positions, one for the padding byte */
|
||||
/* (above) and eight for the length count. If there is not */
|
||||
/* enough space, pad and empty the buffer */
|
||||
if(i > SHA1_BLOCK_SIZE - 9)
|
||||
{
|
||||
if(i < 60) ctx->wbuf[15] = 0;
|
||||
sha1_compile(ctx);
|
||||
i = 0;
|
||||
}
|
||||
else /* compute a word index for the empty buffer positions */
|
||||
i = (i >> 2) + 1;
|
||||
|
||||
while(i < 14) /* and zero pad all but last two positions */
|
||||
ctx->wbuf[i++] = 0;
|
||||
|
||||
/* the following 32-bit length fields are assembled in the */
|
||||
/* wrong byte order on little endian machines but this is */
|
||||
/* corrected later since they are only ever used as 32-bit */
|
||||
/* word values. */
|
||||
ctx->wbuf[14] = ctx->count[1];
|
||||
ctx->wbuf[15] = ctx->count[0];
|
||||
sha1_compile(ctx);
|
||||
|
||||
/* extract the hash value as bytes in case the hash buffer is */
|
||||
/* misaligned for 32-bit words */
|
||||
for(i = 0; i < SHA1_DIGEST_SIZE; ++i)
|
||||
hval[i] = ((ctx->hash[i >> 2] >> (8 * (~i & 3))) & 0xff);
|
||||
}
|
||||
|
||||
VOID_RETURN sha1(unsigned char hval[], const unsigned char data[], unsigned long len)
|
||||
{ sha1_ctx cx[1];
|
||||
|
||||
sha1_begin(cx); sha1_hash(data, len, cx); sha1_end(hval, cx);
|
||||
}
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
72
crypto/src/main/jni/final_key/sha/sha1.h
Normal file
72
crypto/src/main/jni/final_key/sha/sha1.h
Normal file
@@ -0,0 +1,72 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2010, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation.
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its operation, including, but not limited to, correctness
|
||||
and fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
*/
|
||||
|
||||
#ifndef _SHA1_H
|
||||
#define _SHA1_H
|
||||
|
||||
/* define for bit or byte oriented SHA */
|
||||
#if 1
|
||||
# define SHA1_BITS 0 /* byte oriented */
|
||||
#else
|
||||
# define SHA1_BITS 1 /* bit oriented */
|
||||
#endif
|
||||
|
||||
#define SHA_1
|
||||
|
||||
#include <stdlib.h>
|
||||
#include "brg_types.h"
|
||||
|
||||
#define SHA1_BLOCK_SIZE 64
|
||||
#define SHA1_DIGEST_SIZE 20
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
/* type to hold the SHA256 context */
|
||||
|
||||
typedef struct
|
||||
{ uint32_t count[2];
|
||||
uint32_t hash[SHA1_DIGEST_SIZE >> 2];
|
||||
uint32_t wbuf[SHA1_BLOCK_SIZE >> 2];
|
||||
} sha1_ctx;
|
||||
|
||||
/* Note that these prototypes are the same for both bit and */
|
||||
/* byte oriented implementations. However the length fields */
|
||||
/* are in bytes or bits as appropriate for the version used */
|
||||
/* and bit sequences are input as arrays of bytes in which */
|
||||
/* bit sequences run from the most to the least significant */
|
||||
/* end of each byte. The value 'len' in sha1_hash for the */
|
||||
/* byte oriented version of SHA1 is limited to 2^29 bytes, */
|
||||
/* but multiple calls will handle longer data blocks. */
|
||||
|
||||
VOID_RETURN sha1_compile(sha1_ctx ctx[1]);
|
||||
|
||||
VOID_RETURN sha1_begin(sha1_ctx ctx[1]);
|
||||
VOID_RETURN sha1_hash(const unsigned char data[], unsigned long len, sha1_ctx ctx[1]);
|
||||
VOID_RETURN sha1_end(unsigned char hval[], sha1_ctx ctx[1]);
|
||||
VOID_RETURN sha1(unsigned char hval[], const unsigned char data[], unsigned long len);
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
949
crypto/src/main/jni/final_key/sha/sha2.c
Normal file
949
crypto/src/main/jni/final_key/sha/sha2.c
Normal file
@@ -0,0 +1,949 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2010, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation.
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its operation, including, but not limited to, correctness
|
||||
and fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
|
||||
This code implements sha256, sha384 and sha512 but the latter two
|
||||
functions rely on efficient 64-bit integer operations that may not be
|
||||
very efficient on 32-bit machines
|
||||
|
||||
The sha256 functions use a type 'sha256_ctx' to hold details of the
|
||||
current hash state and uses the following three calls:
|
||||
|
||||
void sha256_begin( sha256_ctx ctx[1] )
|
||||
void sha256_hash( const unsigned char data[],
|
||||
unsigned long len, sha256_ctx ctx[1] )
|
||||
void sha_end1( unsigned char hval[], sha256_ctx ctx[1] )
|
||||
|
||||
The first subroutine initialises a hash computation by setting up the
|
||||
context in the sha256_ctx context. The second subroutine hashes 8-bit
|
||||
bytes from array data[] into the hash state withinh sha256_ctx context,
|
||||
the number of bytes to be hashed being given by the the unsigned long
|
||||
integer len. The third subroutine completes the hash calculation and
|
||||
places the resulting digest value in the array of 8-bit bytes hval[].
|
||||
|
||||
The sha384 and sha512 functions are similar and use the interfaces:
|
||||
|
||||
void sha384_begin( sha384_ctx ctx[1] );
|
||||
void sha384_hash( const unsigned char data[],
|
||||
unsigned long len, sha384_ctx ctx[1] );
|
||||
void sha384_end( unsigned char hval[], sha384_ctx ctx[1] );
|
||||
|
||||
void sha512_begin( sha512_ctx ctx[1] );
|
||||
void sha512_hash( const unsigned char data[],
|
||||
unsigned long len, sha512_ctx ctx[1] );
|
||||
void sha512_end( unsigned char hval[], sha512_ctx ctx[1] );
|
||||
|
||||
In addition there is a function sha2 that can be used to call all these
|
||||
functions using a call with a hash length parameter as follows:
|
||||
|
||||
int sha2_begin( unsigned long len, sha2_ctx ctx[1] );
|
||||
void sha2_hash( const unsigned char data[],
|
||||
unsigned long len, sha2_ctx ctx[1] );
|
||||
void sha2_end( unsigned char hval[], sha2_ctx ctx[1] );
|
||||
|
||||
The data block length in any one call to any of these hash functions must
|
||||
be no more than 2^32 - 1 bits or 2^29 - 1 bytes.
|
||||
|
||||
My thanks to Erik Andersen <andersen@codepoet.org> for testing this code
|
||||
on big-endian systems and for his assistance with corrections
|
||||
*/
|
||||
|
||||
#if 1
|
||||
#define UNROLL_SHA2 /* for SHA2 loop unroll */
|
||||
#endif
|
||||
|
||||
#include <string.h> /* for memcpy() etc. */
|
||||
|
||||
#include "sha2.h"
|
||||
#include "brg_endian.h"
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#if defined( _MSC_VER ) && ( _MSC_VER > 800 )
|
||||
#pragma intrinsic(memcpy)
|
||||
#pragma intrinsic(memset)
|
||||
#endif
|
||||
|
||||
#if 0 && defined(_MSC_VER)
|
||||
#define rotl32 _lrotl
|
||||
#define rotr32 _lrotr
|
||||
#else
|
||||
#define rotl32(x,n) (((x) << n) | ((x) >> (32 - n)))
|
||||
#define rotr32(x,n) (((x) >> n) | ((x) << (32 - n)))
|
||||
#endif
|
||||
|
||||
#if !defined(bswap_32)
|
||||
#define bswap_32(x) ((rotr32((x), 24) & 0x00ff00ff) | (rotr32((x), 8) & 0xff00ff00))
|
||||
#endif
|
||||
|
||||
#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN)
|
||||
#define SWAP_BYTES
|
||||
#else
|
||||
#undef SWAP_BYTES
|
||||
#endif
|
||||
|
||||
#if 0
|
||||
|
||||
#define ch(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
|
||||
#define maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
|
||||
|
||||
#else /* Thanks to Rich Schroeppel and Colin Plumb for the following */
|
||||
|
||||
#define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
|
||||
#define maj(x,y,z) (((x) & (y)) | ((z) & ((x) ^ (y))))
|
||||
|
||||
#endif
|
||||
|
||||
/* round transforms for SHA256 and SHA512 compression functions */
|
||||
|
||||
#define vf(n,i) v[(n - i) & 7]
|
||||
|
||||
#define hf(i) (p[i & 15] += \
|
||||
g_1(p[(i + 14) & 15]) + p[(i + 9) & 15] + g_0(p[(i + 1) & 15]))
|
||||
|
||||
#define v_cycle(i,j) \
|
||||
vf(7,i) += (j ? hf(i) : p[i]) + k_0[i+j] \
|
||||
+ s_1(vf(4,i)) + ch(vf(4,i),vf(5,i),vf(6,i)); \
|
||||
vf(3,i) += vf(7,i); \
|
||||
vf(7,i) += s_0(vf(0,i))+ maj(vf(0,i),vf(1,i),vf(2,i))
|
||||
|
||||
#if defined(SHA_224) || defined(SHA_256)
|
||||
|
||||
#define SHA256_MASK (SHA256_BLOCK_SIZE - 1)
|
||||
|
||||
#if defined(SWAP_BYTES)
|
||||
#define bsw_32(p,n) \
|
||||
{ int _i = (n); while(_i--) ((uint32_t*)p)[_i] = bswap_32(((uint32_t*)p)[_i]); }
|
||||
#else
|
||||
#define bsw_32(p,n)
|
||||
#endif
|
||||
|
||||
#define s_0(x) (rotr32((x), 2) ^ rotr32((x), 13) ^ rotr32((x), 22))
|
||||
#define s_1(x) (rotr32((x), 6) ^ rotr32((x), 11) ^ rotr32((x), 25))
|
||||
#define g_0(x) (rotr32((x), 7) ^ rotr32((x), 18) ^ ((x) >> 3))
|
||||
#define g_1(x) (rotr32((x), 17) ^ rotr32((x), 19) ^ ((x) >> 10))
|
||||
#define k_0 k256
|
||||
|
||||
/* rotated SHA256 round definition. Rather than swapping variables as in */
|
||||
/* FIPS-180, different variables are 'rotated' on each round, returning */
|
||||
/* to their starting positions every eight rounds */
|
||||
|
||||
#define q(n) v##n
|
||||
|
||||
#define one_cycle(a,b,c,d,e,f,g,h,k,w) \
|
||||
q(h) += s_1(q(e)) + ch(q(e), q(f), q(g)) + k + w; \
|
||||
q(d) += q(h); q(h) += s_0(q(a)) + maj(q(a), q(b), q(c))
|
||||
|
||||
/* SHA256 mixing data */
|
||||
|
||||
const uint32_t k256[64] =
|
||||
{ 0x428a2f98ul, 0x71374491ul, 0xb5c0fbcful, 0xe9b5dba5ul,
|
||||
0x3956c25bul, 0x59f111f1ul, 0x923f82a4ul, 0xab1c5ed5ul,
|
||||
0xd807aa98ul, 0x12835b01ul, 0x243185beul, 0x550c7dc3ul,
|
||||
0x72be5d74ul, 0x80deb1feul, 0x9bdc06a7ul, 0xc19bf174ul,
|
||||
0xe49b69c1ul, 0xefbe4786ul, 0x0fc19dc6ul, 0x240ca1ccul,
|
||||
0x2de92c6ful, 0x4a7484aaul, 0x5cb0a9dcul, 0x76f988daul,
|
||||
0x983e5152ul, 0xa831c66dul, 0xb00327c8ul, 0xbf597fc7ul,
|
||||
0xc6e00bf3ul, 0xd5a79147ul, 0x06ca6351ul, 0x14292967ul,
|
||||
0x27b70a85ul, 0x2e1b2138ul, 0x4d2c6dfcul, 0x53380d13ul,
|
||||
0x650a7354ul, 0x766a0abbul, 0x81c2c92eul, 0x92722c85ul,
|
||||
0xa2bfe8a1ul, 0xa81a664bul, 0xc24b8b70ul, 0xc76c51a3ul,
|
||||
0xd192e819ul, 0xd6990624ul, 0xf40e3585ul, 0x106aa070ul,
|
||||
0x19a4c116ul, 0x1e376c08ul, 0x2748774cul, 0x34b0bcb5ul,
|
||||
0x391c0cb3ul, 0x4ed8aa4aul, 0x5b9cca4ful, 0x682e6ff3ul,
|
||||
0x748f82eeul, 0x78a5636ful, 0x84c87814ul, 0x8cc70208ul,
|
||||
0x90befffaul, 0xa4506cebul, 0xbef9a3f7ul, 0xc67178f2ul,
|
||||
};
|
||||
|
||||
/* Compile 64 bytes of hash data into SHA256 digest value */
|
||||
/* NOTE: this routine assumes that the byte order in the */
|
||||
/* ctx->wbuf[] at this point is such that low address bytes */
|
||||
/* in the ORIGINAL byte stream will go into the high end of */
|
||||
/* words on BOTH big and little endian systems */
|
||||
|
||||
VOID_RETURN sha256_compile(sha256_ctx ctx[1])
|
||||
{
|
||||
#if !defined(UNROLL_SHA2)
|
||||
|
||||
uint32_t j, *p = ctx->wbuf, v[8];
|
||||
|
||||
memcpy(v, ctx->hash, sizeof(ctx->hash));
|
||||
|
||||
for(j = 0; j < 64; j += 16)
|
||||
{
|
||||
v_cycle( 0, j); v_cycle( 1, j);
|
||||
v_cycle( 2, j); v_cycle( 3, j);
|
||||
v_cycle( 4, j); v_cycle( 5, j);
|
||||
v_cycle( 6, j); v_cycle( 7, j);
|
||||
v_cycle( 8, j); v_cycle( 9, j);
|
||||
v_cycle(10, j); v_cycle(11, j);
|
||||
v_cycle(12, j); v_cycle(13, j);
|
||||
v_cycle(14, j); v_cycle(15, j);
|
||||
}
|
||||
|
||||
ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
|
||||
ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
|
||||
ctx->hash[4] += v[4]; ctx->hash[5] += v[5];
|
||||
ctx->hash[6] += v[6]; ctx->hash[7] += v[7];
|
||||
|
||||
#else
|
||||
|
||||
uint32_t *p = ctx->wbuf,v0,v1,v2,v3,v4,v5,v6,v7;
|
||||
|
||||
v0 = ctx->hash[0]; v1 = ctx->hash[1];
|
||||
v2 = ctx->hash[2]; v3 = ctx->hash[3];
|
||||
v4 = ctx->hash[4]; v5 = ctx->hash[5];
|
||||
v6 = ctx->hash[6]; v7 = ctx->hash[7];
|
||||
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[ 0],p[ 0]);
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[ 1],p[ 1]);
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[ 2],p[ 2]);
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[ 3],p[ 3]);
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[ 4],p[ 4]);
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[ 5],p[ 5]);
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[ 6],p[ 6]);
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[ 7],p[ 7]);
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[ 8],p[ 8]);
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[ 9],p[ 9]);
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[10],p[10]);
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[11],p[11]);
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[12],p[12]);
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[13],p[13]);
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[14],p[14]);
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[15],p[15]);
|
||||
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[16],hf( 0));
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[17],hf( 1));
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[18],hf( 2));
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[19],hf( 3));
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[20],hf( 4));
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[21],hf( 5));
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[22],hf( 6));
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[23],hf( 7));
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[24],hf( 8));
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[25],hf( 9));
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[26],hf(10));
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[27],hf(11));
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[28],hf(12));
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[29],hf(13));
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[30],hf(14));
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[31],hf(15));
|
||||
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[32],hf( 0));
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[33],hf( 1));
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[34],hf( 2));
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[35],hf( 3));
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[36],hf( 4));
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[37],hf( 5));
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[38],hf( 6));
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[39],hf( 7));
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[40],hf( 8));
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[41],hf( 9));
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[42],hf(10));
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[43],hf(11));
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[44],hf(12));
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[45],hf(13));
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[46],hf(14));
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[47],hf(15));
|
||||
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[48],hf( 0));
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[49],hf( 1));
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[50],hf( 2));
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[51],hf( 3));
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[52],hf( 4));
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[53],hf( 5));
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[54],hf( 6));
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[55],hf( 7));
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[56],hf( 8));
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[57],hf( 9));
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[58],hf(10));
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[59],hf(11));
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[60],hf(12));
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[61],hf(13));
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[62],hf(14));
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[63],hf(15));
|
||||
|
||||
ctx->hash[0] += v0; ctx->hash[1] += v1;
|
||||
ctx->hash[2] += v2; ctx->hash[3] += v3;
|
||||
ctx->hash[4] += v4; ctx->hash[5] += v5;
|
||||
ctx->hash[6] += v6; ctx->hash[7] += v7;
|
||||
#endif
|
||||
}
|
||||
|
||||
/* SHA256 hash data in an array of bytes into hash buffer */
|
||||
/* and call the hash_compile function as required. */
|
||||
|
||||
VOID_RETURN sha256_hash(const unsigned char data[], unsigned long len, sha256_ctx ctx[1])
|
||||
{ uint32_t pos = (uint32_t)((ctx->count[0] >> 3) & SHA256_MASK);
|
||||
const unsigned char *sp = data;
|
||||
unsigned char *w = (unsigned char*)ctx->wbuf;
|
||||
#if SHA2_BITS == 1
|
||||
uint32_t ofs = (ctx->count[0] & 7);
|
||||
#else
|
||||
len <<= 3;
|
||||
#endif
|
||||
if((ctx->count[0] += len) < len)
|
||||
++(ctx->count[1]);
|
||||
|
||||
#if SHA2_BITS == 1
|
||||
if(ofs) /* if not on a byte boundary */
|
||||
{
|
||||
if(ofs + len < 8) /* if no added bytes are needed */
|
||||
{
|
||||
w[pos] |= (*sp >> ofs);
|
||||
}
|
||||
else /* otherwise and add bytes */
|
||||
{ unsigned char part = w[pos];
|
||||
|
||||
while((int)(ofs + (len -= 8)) >= 0)
|
||||
{
|
||||
w[pos++] = part | (*sp >> ofs);
|
||||
part = *sp++ << (8 - ofs);
|
||||
if(pos == SHA256_BLOCK_SIZE)
|
||||
{
|
||||
bsw_32(w, SHA256_BLOCK_SIZE >> 2);
|
||||
sha256_compile(ctx); pos = 0;
|
||||
}
|
||||
}
|
||||
|
||||
w[pos] = part;
|
||||
}
|
||||
}
|
||||
else /* data is byte aligned */
|
||||
#endif
|
||||
{ uint32_t space = SHA256_BLOCK_SIZE - pos;
|
||||
|
||||
while(len >= (space << 3))
|
||||
{
|
||||
memcpy(w + pos, sp, space);
|
||||
bsw_32(w, SHA256_BLOCK_SIZE >> 2);
|
||||
sha256_compile(ctx);
|
||||
sp += space; len -= (space << 3);
|
||||
space = SHA256_BLOCK_SIZE; pos = 0;
|
||||
}
|
||||
memcpy(w + pos, sp, (len + 7 * SHA2_BITS) >> 3);
|
||||
}
|
||||
}
|
||||
|
||||
/* SHA256 Final padding and digest calculation */
|
||||
|
||||
static void sha_end1(unsigned char hval[], sha256_ctx ctx[1], const unsigned int hlen)
|
||||
{ uint32_t i = (uint32_t)((ctx->count[0] >> 3) & SHA256_MASK), m1;
|
||||
|
||||
/* put bytes in the buffer in an order in which references to */
|
||||
/* 32-bit words will put bytes with lower addresses into the */
|
||||
/* top of 32 bit words on BOTH big and little endian machines */
|
||||
bsw_32(ctx->wbuf, (i + 3 + SHA2_BITS) >> 2)
|
||||
|
||||
/* we now need to mask valid bytes and add the padding which is */
|
||||
/* a single 1 bit and as many zero bits as necessary. Note that */
|
||||
/* we can always add the first padding byte here because the */
|
||||
/* buffer always has at least one empty slot */
|
||||
m1 = (unsigned char)0x80 >> (ctx->count[0] & 7);
|
||||
ctx->wbuf[i >> 2] &= ((0xffffff00 | (~m1 + 1)) << 8 * (~i & 3));
|
||||
ctx->wbuf[i >> 2] |= (m1 << 8 * (~i & 3));
|
||||
|
||||
/* we need 9 or more empty positions, one for the padding byte */
|
||||
/* (above) and eight for the length count. If there is not */
|
||||
/* enough space pad and empty the buffer */
|
||||
if(i > SHA256_BLOCK_SIZE - 9)
|
||||
{
|
||||
if(i < 60) ctx->wbuf[15] = 0;
|
||||
sha256_compile(ctx);
|
||||
i = 0;
|
||||
}
|
||||
else /* compute a word index for the empty buffer positions */
|
||||
i = (i >> 2) + 1;
|
||||
|
||||
while(i < 14) /* and zero pad all but last two positions */
|
||||
ctx->wbuf[i++] = 0;
|
||||
|
||||
/* the following 32-bit length fields are assembled in the */
|
||||
/* wrong byte order on little endian machines but this is */
|
||||
/* corrected later since they are only ever used as 32-bit */
|
||||
/* word values. */
|
||||
ctx->wbuf[14] = ctx->count[1];
|
||||
ctx->wbuf[15] = ctx->count[0];
|
||||
sha256_compile(ctx);
|
||||
|
||||
/* extract the hash value as bytes in case the hash buffer is */
|
||||
/* misaligned for 32-bit words */
|
||||
for(i = 0; i < hlen; ++i)
|
||||
hval[i] = ((ctx->hash[i >> 2] >> (8 * (~i & 3))) & 0xff);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(SHA_224)
|
||||
|
||||
const uint32_t i224[8] =
|
||||
{
|
||||
0xc1059ed8ul, 0x367cd507ul, 0x3070dd17ul, 0xf70e5939ul,
|
||||
0xffc00b31ul, 0x68581511ul, 0x64f98fa7ul, 0xbefa4fa4ul
|
||||
};
|
||||
|
||||
VOID_RETURN sha224_begin(sha224_ctx ctx[1])
|
||||
{
|
||||
memset(ctx, 0, sizeof(sha224_ctx));
|
||||
memcpy(ctx->hash, i224, sizeof(ctx->hash));
|
||||
}
|
||||
|
||||
VOID_RETURN sha224_end(unsigned char hval[], sha224_ctx ctx[1])
|
||||
{
|
||||
sha_end1(hval, ctx, SHA224_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
VOID_RETURN sha224(unsigned char hval[], const unsigned char data[], unsigned long len)
|
||||
{ sha224_ctx cx[1];
|
||||
|
||||
sha224_begin(cx);
|
||||
sha224_hash(data, len, cx);
|
||||
sha_end1(hval, cx, SHA224_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(SHA_256)
|
||||
|
||||
const uint32_t i256[8] =
|
||||
{
|
||||
0x6a09e667ul, 0xbb67ae85ul, 0x3c6ef372ul, 0xa54ff53aul,
|
||||
0x510e527ful, 0x9b05688cul, 0x1f83d9abul, 0x5be0cd19ul
|
||||
};
|
||||
|
||||
VOID_RETURN sha256_begin(sha256_ctx ctx[1])
|
||||
{
|
||||
memset(ctx, 0, sizeof(sha256_ctx));
|
||||
memcpy(ctx->hash, i256, sizeof(ctx->hash));
|
||||
}
|
||||
|
||||
VOID_RETURN sha256_end(unsigned char hval[], sha256_ctx ctx[1])
|
||||
{
|
||||
sha_end1(hval, ctx, SHA256_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
VOID_RETURN sha256(unsigned char hval[], const unsigned char data[], unsigned long len)
|
||||
{ sha256_ctx cx[1];
|
||||
|
||||
sha256_begin(cx);
|
||||
sha256_hash(data, len, cx);
|
||||
sha_end1(hval, cx, SHA256_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(SHA_384) || defined(SHA_512)
|
||||
|
||||
#define SHA512_MASK (SHA512_BLOCK_SIZE - 1)
|
||||
|
||||
#define rotr64(x,n) (((x) >> n) | ((x) << (64 - n)))
|
||||
|
||||
#if !defined(bswap_64)
|
||||
#define bswap_64(x) (((uint64_t)(bswap_32((uint32_t)(x)))) << 32 | bswap_32((uint32_t)((x) >> 32)))
|
||||
#endif
|
||||
|
||||
#if defined(SWAP_BYTES)
|
||||
#define bsw_64(p,n) \
|
||||
{ int _i = (n); while(_i--) ((uint64_t*)p)[_i] = bswap_64(((uint64_t*)p)[_i]); }
|
||||
#else
|
||||
#define bsw_64(p,n)
|
||||
#endif
|
||||
|
||||
/* SHA512 mixing function definitions */
|
||||
|
||||
#ifdef s_0
|
||||
# undef s_0
|
||||
# undef s_1
|
||||
# undef g_0
|
||||
# undef g_1
|
||||
# undef k_0
|
||||
#endif
|
||||
|
||||
#define s_0(x) (rotr64((x), 28) ^ rotr64((x), 34) ^ rotr64((x), 39))
|
||||
#define s_1(x) (rotr64((x), 14) ^ rotr64((x), 18) ^ rotr64((x), 41))
|
||||
#define g_0(x) (rotr64((x), 1) ^ rotr64((x), 8) ^ ((x) >> 7))
|
||||
#define g_1(x) (rotr64((x), 19) ^ rotr64((x), 61) ^ ((x) >> 6))
|
||||
#define k_0 k512
|
||||
|
||||
/* SHA384/SHA512 mixing data */
|
||||
|
||||
const uint64_t k512[80] =
|
||||
{
|
||||
li_64(428a2f98d728ae22), li_64(7137449123ef65cd),
|
||||
li_64(b5c0fbcfec4d3b2f), li_64(e9b5dba58189dbbc),
|
||||
li_64(3956c25bf348b538), li_64(59f111f1b605d019),
|
||||
li_64(923f82a4af194f9b), li_64(ab1c5ed5da6d8118),
|
||||
li_64(d807aa98a3030242), li_64(12835b0145706fbe),
|
||||
li_64(243185be4ee4b28c), li_64(550c7dc3d5ffb4e2),
|
||||
li_64(72be5d74f27b896f), li_64(80deb1fe3b1696b1),
|
||||
li_64(9bdc06a725c71235), li_64(c19bf174cf692694),
|
||||
li_64(e49b69c19ef14ad2), li_64(efbe4786384f25e3),
|
||||
li_64(0fc19dc68b8cd5b5), li_64(240ca1cc77ac9c65),
|
||||
li_64(2de92c6f592b0275), li_64(4a7484aa6ea6e483),
|
||||
li_64(5cb0a9dcbd41fbd4), li_64(76f988da831153b5),
|
||||
li_64(983e5152ee66dfab), li_64(a831c66d2db43210),
|
||||
li_64(b00327c898fb213f), li_64(bf597fc7beef0ee4),
|
||||
li_64(c6e00bf33da88fc2), li_64(d5a79147930aa725),
|
||||
li_64(06ca6351e003826f), li_64(142929670a0e6e70),
|
||||
li_64(27b70a8546d22ffc), li_64(2e1b21385c26c926),
|
||||
li_64(4d2c6dfc5ac42aed), li_64(53380d139d95b3df),
|
||||
li_64(650a73548baf63de), li_64(766a0abb3c77b2a8),
|
||||
li_64(81c2c92e47edaee6), li_64(92722c851482353b),
|
||||
li_64(a2bfe8a14cf10364), li_64(a81a664bbc423001),
|
||||
li_64(c24b8b70d0f89791), li_64(c76c51a30654be30),
|
||||
li_64(d192e819d6ef5218), li_64(d69906245565a910),
|
||||
li_64(f40e35855771202a), li_64(106aa07032bbd1b8),
|
||||
li_64(19a4c116b8d2d0c8), li_64(1e376c085141ab53),
|
||||
li_64(2748774cdf8eeb99), li_64(34b0bcb5e19b48a8),
|
||||
li_64(391c0cb3c5c95a63), li_64(4ed8aa4ae3418acb),
|
||||
li_64(5b9cca4f7763e373), li_64(682e6ff3d6b2b8a3),
|
||||
li_64(748f82ee5defb2fc), li_64(78a5636f43172f60),
|
||||
li_64(84c87814a1f0ab72), li_64(8cc702081a6439ec),
|
||||
li_64(90befffa23631e28), li_64(a4506cebde82bde9),
|
||||
li_64(bef9a3f7b2c67915), li_64(c67178f2e372532b),
|
||||
li_64(ca273eceea26619c), li_64(d186b8c721c0c207),
|
||||
li_64(eada7dd6cde0eb1e), li_64(f57d4f7fee6ed178),
|
||||
li_64(06f067aa72176fba), li_64(0a637dc5a2c898a6),
|
||||
li_64(113f9804bef90dae), li_64(1b710b35131c471b),
|
||||
li_64(28db77f523047d84), li_64(32caab7b40c72493),
|
||||
li_64(3c9ebe0a15c9bebc), li_64(431d67c49c100d4c),
|
||||
li_64(4cc5d4becb3e42b6), li_64(597f299cfc657e2a),
|
||||
li_64(5fcb6fab3ad6faec), li_64(6c44198c4a475817)
|
||||
};
|
||||
|
||||
/* Compile 128 bytes of hash data into SHA384/512 digest */
|
||||
/* NOTE: this routine assumes that the byte order in the */
|
||||
/* ctx->wbuf[] at this point is such that low address bytes */
|
||||
/* in the ORIGINAL byte stream will go into the high end of */
|
||||
/* words on BOTH big and little endian systems */
|
||||
|
||||
VOID_RETURN sha512_compile(sha512_ctx ctx[1])
|
||||
{ uint64_t v[8], *p = ctx->wbuf;
|
||||
uint32_t j;
|
||||
|
||||
memcpy(v, ctx->hash, sizeof(ctx->hash));
|
||||
|
||||
for(j = 0; j < 80; j += 16)
|
||||
{
|
||||
v_cycle( 0, j); v_cycle( 1, j);
|
||||
v_cycle( 2, j); v_cycle( 3, j);
|
||||
v_cycle( 4, j); v_cycle( 5, j);
|
||||
v_cycle( 6, j); v_cycle( 7, j);
|
||||
v_cycle( 8, j); v_cycle( 9, j);
|
||||
v_cycle(10, j); v_cycle(11, j);
|
||||
v_cycle(12, j); v_cycle(13, j);
|
||||
v_cycle(14, j); v_cycle(15, j);
|
||||
}
|
||||
|
||||
ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
|
||||
ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
|
||||
ctx->hash[4] += v[4]; ctx->hash[5] += v[5];
|
||||
ctx->hash[6] += v[6]; ctx->hash[7] += v[7];
|
||||
}
|
||||
|
||||
/* Compile 128 bytes of hash data into SHA256 digest value */
|
||||
/* NOTE: this routine assumes that the byte order in the */
|
||||
/* ctx->wbuf[] at this point is in such an order that low */
|
||||
/* address bytes in the ORIGINAL byte stream placed in this */
|
||||
/* buffer will now go to the high end of words on BOTH big */
|
||||
/* and little endian systems */
|
||||
|
||||
VOID_RETURN sha512_hash(const unsigned char data[], unsigned long len, sha512_ctx ctx[1])
|
||||
{ uint32_t pos = (uint32_t)(ctx->count[0] >> 3) & SHA512_MASK;
|
||||
const unsigned char *sp = data;
|
||||
unsigned char *w = (unsigned char*)ctx->wbuf;
|
||||
#if SHA2_BITS == 1
|
||||
uint32_t ofs = (ctx->count[0] & 7);
|
||||
#else
|
||||
len <<= 3;
|
||||
#endif
|
||||
|
||||
if((ctx->count[0] += len) < len)
|
||||
++(ctx->count[1]);
|
||||
|
||||
#if SHA2_BITS == 1
|
||||
if(ofs) /* if not on a byte boundary */
|
||||
{
|
||||
if(ofs + len < 8) /* if no added bytes are needed */
|
||||
{
|
||||
w[pos] |= (*sp >> ofs);
|
||||
}
|
||||
else /* otherwise and add bytes */
|
||||
{ unsigned char part = w[pos];
|
||||
|
||||
while((int)(ofs + (len -= 8)) >= 0)
|
||||
{
|
||||
w[pos++] = part | (*sp >> ofs);
|
||||
part = *sp++ << (8 - ofs);
|
||||
if(pos == SHA512_BLOCK_SIZE)
|
||||
{
|
||||
bsw_64(w, SHA512_BLOCK_SIZE >> 3);
|
||||
sha512_compile(ctx); pos = 0;
|
||||
}
|
||||
}
|
||||
|
||||
w[pos] = part;
|
||||
}
|
||||
}
|
||||
else /* data is byte aligned */
|
||||
#endif
|
||||
{ uint32_t space = SHA512_BLOCK_SIZE - pos;
|
||||
|
||||
while(len >= (space << 3))
|
||||
{
|
||||
memcpy(w + pos, sp, space);
|
||||
bsw_64(w, SHA512_BLOCK_SIZE >> 3);
|
||||
sha512_compile(ctx);
|
||||
sp += space; len -= (space << 3);
|
||||
space = SHA512_BLOCK_SIZE; pos = 0;
|
||||
}
|
||||
memcpy(w + pos, sp, (len + 7 * SHA2_BITS) >> 3);
|
||||
}
|
||||
}
|
||||
|
||||
/* SHA384/512 Final padding and digest calculation */
|
||||
|
||||
static void sha_end2(unsigned char hval[], sha512_ctx ctx[1], const unsigned int hlen)
|
||||
{ uint32_t i = (uint32_t)((ctx->count[0] >> 3) & SHA512_MASK);
|
||||
uint64_t m1;
|
||||
|
||||
/* put bytes in the buffer in an order in which references to */
|
||||
/* 32-bit words will put bytes with lower addresses into the */
|
||||
/* top of 32 bit words on BOTH big and little endian machines */
|
||||
bsw_64(ctx->wbuf, (i + 7 + SHA2_BITS) >> 3);
|
||||
|
||||
/* we now need to mask valid bytes and add the padding which is */
|
||||
/* a single 1 bit and as many zero bits as necessary. Note that */
|
||||
/* we can always add the first padding byte here because the */
|
||||
/* buffer always has at least one empty slot */
|
||||
m1 = (unsigned char)0x80 >> (ctx->count[0] & 7);
|
||||
ctx->wbuf[i >> 3] &= ((li_64(ffffffffffffff00) | (~m1 + 1)) << 8 * (~i & 7));
|
||||
ctx->wbuf[i >> 3] |= (m1 << 8 * (~i & 7));
|
||||
|
||||
/* we need 17 or more empty byte positions, one for the padding */
|
||||
/* byte (above) and sixteen for the length count. If there is */
|
||||
/* not enough space pad and empty the buffer */
|
||||
if(i > SHA512_BLOCK_SIZE - 17)
|
||||
{
|
||||
if(i < 120) ctx->wbuf[15] = 0;
|
||||
sha512_compile(ctx);
|
||||
i = 0;
|
||||
}
|
||||
else
|
||||
i = (i >> 3) + 1;
|
||||
|
||||
while(i < 14)
|
||||
ctx->wbuf[i++] = 0;
|
||||
|
||||
/* the following 64-bit length fields are assembled in the */
|
||||
/* wrong byte order on little endian machines but this is */
|
||||
/* corrected later since they are only ever used as 64-bit */
|
||||
/* word values. */
|
||||
ctx->wbuf[14] = ctx->count[1];
|
||||
ctx->wbuf[15] = ctx->count[0];
|
||||
sha512_compile(ctx);
|
||||
|
||||
/* extract the hash value as bytes in case the hash buffer is */
|
||||
/* misaligned for 32-bit words */
|
||||
for(i = 0; i < hlen; ++i)
|
||||
hval[i] = ((ctx->hash[i >> 3] >> (8 * (~i & 7))) & 0xff);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(SHA_384)
|
||||
|
||||
/* SHA384 initialisation data */
|
||||
|
||||
const uint64_t i384[80] =
|
||||
{
|
||||
li_64(cbbb9d5dc1059ed8), li_64(629a292a367cd507),
|
||||
li_64(9159015a3070dd17), li_64(152fecd8f70e5939),
|
||||
li_64(67332667ffc00b31), li_64(8eb44a8768581511),
|
||||
li_64(db0c2e0d64f98fa7), li_64(47b5481dbefa4fa4)
|
||||
};
|
||||
|
||||
VOID_RETURN sha384_begin(sha384_ctx ctx[1])
|
||||
{
|
||||
memset(ctx, 0, sizeof(sha384_ctx));
|
||||
memcpy(ctx->hash, i384, sizeof(ctx->hash));
|
||||
}
|
||||
|
||||
VOID_RETURN sha384_end(unsigned char hval[], sha384_ctx ctx[1])
|
||||
{
|
||||
sha_end2(hval, ctx, SHA384_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
VOID_RETURN sha384(unsigned char hval[], const unsigned char data[], unsigned long len)
|
||||
{ sha384_ctx cx[1];
|
||||
|
||||
sha384_begin(cx);
|
||||
sha384_hash(data, len, cx);
|
||||
sha_end2(hval, cx, SHA384_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(SHA_512)
|
||||
|
||||
/* SHA512 initialisation data */
|
||||
|
||||
static const uint64_t i512[SHA512_DIGEST_SIZE >> 3] =
|
||||
{
|
||||
li_64(6a09e667f3bcc908), li_64(bb67ae8584caa73b),
|
||||
li_64(3c6ef372fe94f82b), li_64(a54ff53a5f1d36f1),
|
||||
li_64(510e527fade682d1), li_64(9b05688c2b3e6c1f),
|
||||
li_64(1f83d9abfb41bd6b), li_64(5be0cd19137e2179)
|
||||
};
|
||||
|
||||
/* FIPS PUB 180-4: SHA-512/256 */
|
||||
|
||||
static const uint64_t i512_256[SHA512_DIGEST_SIZE >> 3] =
|
||||
{
|
||||
li_64(22312194fc2bf72c), li_64(9f555fa3c84c64c2),
|
||||
li_64(2393b86b6f53b151), li_64(963877195940eabd),
|
||||
li_64(96283ee2a88effe3), li_64(be5e1e2553863992),
|
||||
li_64(2b0199fc2c85b8aa), li_64(0eb72ddc81c52ca2),
|
||||
};
|
||||
|
||||
/* FIPS PUB 180-4: SHA-512/224 */
|
||||
|
||||
static const uint64_t i512_224[SHA512_DIGEST_SIZE >> 3] =
|
||||
{
|
||||
li_64(8c3d37c819544da2), li_64(73e1996689dcd4d6),
|
||||
li_64(1dfab7ae32ff9c82), li_64(679dd514582f9fcf),
|
||||
li_64(0f6d2b697bd44da8), li_64(77e36f7304c48942),
|
||||
li_64(3f9d85a86a1d36c8), li_64(1112e6ad91d692a1),
|
||||
};
|
||||
|
||||
/* FIPS PUB 180-4: SHA-512/192 (unsanctioned; facilitates using AES-192) */
|
||||
|
||||
static const uint64_t i512_192[SHA512_DIGEST_SIZE >> 3] =
|
||||
{
|
||||
li_64(010176140648b233), li_64(db92aeb1eebadd6f),
|
||||
li_64(83a9e27aa1d5ea62), li_64(ec95f77eb609b4e1),
|
||||
li_64(71a99185c75caefa), li_64(006e8f08baf32e3c),
|
||||
li_64(6a2b21abd2db2aec), li_64(24926cdbd918a27f),
|
||||
};
|
||||
|
||||
/* FIPS PUB 180-4: SHA-512/128 (unsanctioned; facilitates using AES-128) */
|
||||
|
||||
static const uint64_t i512_128[SHA512_DIGEST_SIZE >> 3] =
|
||||
{
|
||||
li_64(c953a21464c3e8cc), li_64(06cc9cfd166a34b5),
|
||||
li_64(647e88dabf8b24ab), li_64(8513e4dc05a078ac),
|
||||
li_64(7266fcfb7cba0534), li_64(854a78e2ecd19b93),
|
||||
li_64(8618061711cec2dd), li_64(b20d8506efb929b1),
|
||||
};
|
||||
|
||||
VOID_RETURN sha512_begin(sha512_ctx ctx[1])
|
||||
{
|
||||
memset(ctx, 0, sizeof(sha512_ctx));
|
||||
memcpy(ctx->hash, i512, sizeof(ctx->hash));
|
||||
}
|
||||
|
||||
VOID_RETURN sha512_256_begin(sha512_ctx ctx[1])
|
||||
{
|
||||
memset(ctx, 0, sizeof(sha512_ctx));
|
||||
memcpy(ctx->hash, i512_256, sizeof(ctx->hash));
|
||||
}
|
||||
|
||||
VOID_RETURN sha512_224_begin(sha512_ctx ctx[1])
|
||||
{
|
||||
memset(ctx, 0, sizeof(sha512_ctx));
|
||||
memcpy(ctx->hash, i512_224, sizeof(ctx->hash));
|
||||
}
|
||||
|
||||
VOID_RETURN sha512_192_begin(sha512_ctx ctx[1])
|
||||
{
|
||||
memset(ctx, 0, sizeof(sha512_ctx));
|
||||
memcpy(ctx->hash, i512_192, sizeof(ctx->hash));
|
||||
}
|
||||
|
||||
VOID_RETURN sha512_128_begin(sha512_ctx ctx[1])
|
||||
{
|
||||
memset(ctx, 0, sizeof(sha512_ctx));
|
||||
memcpy(ctx->hash, i512_128, sizeof(ctx->hash));
|
||||
}
|
||||
|
||||
VOID_RETURN sha512_end(unsigned char hval[], sha512_ctx ctx[1])
|
||||
{
|
||||
sha_end2(hval, ctx, SHA512_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
VOID_RETURN sha512_256_end(unsigned char hval[], sha512_ctx ctx[1])
|
||||
{
|
||||
sha_end2(hval, ctx, SHA512_256_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
VOID_RETURN sha512_224_end(unsigned char hval[], sha512_ctx ctx[1])
|
||||
{
|
||||
sha_end2(hval, ctx, SHA512_224_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
VOID_RETURN sha512_192_end(unsigned char hval[], sha512_ctx ctx[1])
|
||||
{
|
||||
sha_end2(hval, ctx, SHA512_192_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
VOID_RETURN sha512_128_end(unsigned char hval[], sha512_ctx ctx[1])
|
||||
{
|
||||
sha_end2(hval, ctx, SHA512_128_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
VOID_RETURN sha512(unsigned char hval[], const unsigned char data[], unsigned long len)
|
||||
{ sha512_ctx cx[1];
|
||||
|
||||
sha512_begin(cx);
|
||||
sha512_hash(data, len, cx);
|
||||
sha512_end(hval, cx);
|
||||
}
|
||||
|
||||
VOID_RETURN sha512_256(unsigned char hval[], const unsigned char data[], unsigned long len)
|
||||
{ sha512_ctx cx[1];
|
||||
|
||||
sha512_256_begin(cx);
|
||||
sha512_256_hash(data, len, cx);
|
||||
sha512_256_end(hval, cx);
|
||||
}
|
||||
|
||||
VOID_RETURN sha512_224(unsigned char hval[], const unsigned char data[], unsigned long len)
|
||||
{ sha512_ctx cx[1];
|
||||
|
||||
sha512_224_begin(cx);
|
||||
sha512_224_hash(data, len, cx);
|
||||
sha512_224_end(hval, cx);
|
||||
}
|
||||
|
||||
VOID_RETURN sha512_192(unsigned char hval[], const unsigned char data[], unsigned long len)
|
||||
{ sha512_ctx cx[1];
|
||||
|
||||
sha512_192_begin(cx);
|
||||
sha512_192_hash(data, len, cx);
|
||||
sha512_192_end(hval, cx);
|
||||
}
|
||||
|
||||
VOID_RETURN sha512_128(unsigned char hval[], const unsigned char data[], unsigned long len)
|
||||
{ sha512_ctx cx[1];
|
||||
|
||||
sha512_128_begin(cx);
|
||||
sha512_128_hash(data, len, cx);
|
||||
sha512_128_end(hval, cx);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(SHA_2)
|
||||
|
||||
#define CTX_224(x) ((x)->uu->ctx256)
|
||||
#define CTX_256(x) ((x)->uu->ctx256)
|
||||
#define CTX_384(x) ((x)->uu->ctx512)
|
||||
#define CTX_512(x) ((x)->uu->ctx512)
|
||||
|
||||
/* SHA2 initialisation */
|
||||
|
||||
INT_RETURN sha2_begin(unsigned long len, sha2_ctx ctx[1])
|
||||
{
|
||||
switch(len)
|
||||
{
|
||||
#if defined(SHA_224)
|
||||
case 224:
|
||||
case 28: CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0;
|
||||
memcpy(CTX_256(ctx)->hash, i224, 32);
|
||||
ctx->sha2_len = 28; return EXIT_SUCCESS;
|
||||
#endif
|
||||
#if defined(SHA_256)
|
||||
case 256:
|
||||
case 32: CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0;
|
||||
memcpy(CTX_256(ctx)->hash, i256, 32);
|
||||
ctx->sha2_len = 32; return EXIT_SUCCESS;
|
||||
#endif
|
||||
#if defined(SHA_384)
|
||||
case 384:
|
||||
case 48: CTX_384(ctx)->count[0] = CTX_384(ctx)->count[1] = 0;
|
||||
memcpy(CTX_384(ctx)->hash, i384, 64);
|
||||
ctx->sha2_len = 48; return EXIT_SUCCESS;
|
||||
#endif
|
||||
#if defined(SHA_512)
|
||||
case 512:
|
||||
case 64: CTX_512(ctx)->count[0] = CTX_512(ctx)->count[1] = 0;
|
||||
memcpy(CTX_512(ctx)->hash, i512, 64);
|
||||
ctx->sha2_len = 64; return EXIT_SUCCESS;
|
||||
#endif
|
||||
default: return EXIT_FAILURE;
|
||||
}
|
||||
}
|
||||
|
||||
VOID_RETURN sha2_hash(const unsigned char data[], unsigned long len, sha2_ctx ctx[1])
|
||||
{
|
||||
switch(ctx->sha2_len)
|
||||
{
|
||||
#if defined(SHA_224)
|
||||
case 28: sha224_hash(data, len, CTX_224(ctx)); return;
|
||||
#endif
|
||||
#if defined(SHA_256)
|
||||
case 32: sha256_hash(data, len, CTX_256(ctx)); return;
|
||||
#endif
|
||||
#if defined(SHA_384)
|
||||
case 48: sha384_hash(data, len, CTX_384(ctx)); return;
|
||||
#endif
|
||||
#if defined(SHA_512)
|
||||
case 64: sha512_hash(data, len, CTX_512(ctx)); return;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
VOID_RETURN sha2_end(unsigned char hval[], sha2_ctx ctx[1])
|
||||
{
|
||||
switch(ctx->sha2_len)
|
||||
{
|
||||
#if defined(SHA_224)
|
||||
case 28: sha_end1(hval, CTX_224(ctx), SHA224_DIGEST_SIZE); return;
|
||||
#endif
|
||||
#if defined(SHA_256)
|
||||
case 32: sha_end1(hval, CTX_256(ctx), SHA256_DIGEST_SIZE); return;
|
||||
#endif
|
||||
#if defined(SHA_384)
|
||||
case 48: sha_end2(hval, CTX_384(ctx), SHA384_DIGEST_SIZE); return;
|
||||
#endif
|
||||
#if defined(SHA_512)
|
||||
case 64: sha_end2(hval, CTX_512(ctx), SHA512_DIGEST_SIZE); return;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
INT_RETURN sha2(unsigned char hval[], unsigned long size,
|
||||
const unsigned char data[], unsigned long len)
|
||||
{ sha2_ctx cx[1];
|
||||
|
||||
if(sha2_begin(size, cx) == EXIT_SUCCESS)
|
||||
{
|
||||
sha2_hash(data, len, cx); sha2_end(hval, cx); return EXIT_SUCCESS;
|
||||
}
|
||||
else
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
183
crypto/src/main/jni/final_key/sha/sha2.h
Normal file
183
crypto/src/main/jni/final_key/sha/sha2.h
Normal file
@@ -0,0 +1,183 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2010, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation.
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its operation, including, but not limited to, correctness
|
||||
and fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
*/
|
||||
|
||||
#ifndef _SHA2_H
|
||||
#define _SHA2_H
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
/* define for bit or byte oriented SHA */
|
||||
#if 1
|
||||
# define SHA2_BITS 0 /* byte oriented */
|
||||
#else
|
||||
# define SHA2_BITS 1 /* bit oriented */
|
||||
#endif
|
||||
|
||||
/* define the hash functions that you need */
|
||||
/* define for 64-bit SHA384 and SHA512 */
|
||||
#define SHA_64BIT
|
||||
#define SHA_2 /* for dynamic hash length */
|
||||
#define SHA_224
|
||||
#define SHA_256
|
||||
#ifdef SHA_64BIT
|
||||
# define SHA_384
|
||||
# define SHA_512
|
||||
# define NEED_uint64_t
|
||||
#endif
|
||||
|
||||
#define SHA2_MAX_DIGEST_SIZE 64
|
||||
#define SHA2_MAX_BLOCK_SIZE 128
|
||||
|
||||
#include "brg_types.h"
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
/* Note that the following function prototypes are the same */
|
||||
/* for both the bit and byte oriented implementations. But */
|
||||
/* the length fields are in bytes or bits as is appropriate */
|
||||
/* for the version used. Bit sequences are arrays of bytes */
|
||||
/* in which bit sequence indexes increase from the most to */
|
||||
/* the least significant end of each byte. The value 'len' */
|
||||
/* in sha<nnn>_hash for the byte oriented versions of SHA2 */
|
||||
/* is limited to 2^29 bytes, but multiple calls will handle */
|
||||
/* longer data blocks. */
|
||||
|
||||
#define SHA224_DIGEST_SIZE 28
|
||||
#define SHA224_BLOCK_SIZE 64
|
||||
|
||||
#define SHA256_DIGEST_SIZE 32
|
||||
#define SHA256_BLOCK_SIZE 64
|
||||
|
||||
/* type to hold the SHA256 (and SHA224) context */
|
||||
|
||||
typedef struct
|
||||
{ uint32_t count[2];
|
||||
uint32_t hash[SHA256_DIGEST_SIZE >> 2];
|
||||
uint32_t wbuf[SHA256_BLOCK_SIZE >> 2];
|
||||
} sha256_ctx;
|
||||
|
||||
typedef sha256_ctx sha224_ctx;
|
||||
|
||||
VOID_RETURN sha256_compile(sha256_ctx ctx[1]);
|
||||
|
||||
VOID_RETURN sha224_begin(sha224_ctx ctx[1]);
|
||||
#define sha224_hash sha256_hash
|
||||
VOID_RETURN sha224_end(unsigned char hval[], sha224_ctx ctx[1]);
|
||||
VOID_RETURN sha224(unsigned char hval[], const unsigned char data[], unsigned long len);
|
||||
|
||||
VOID_RETURN sha256_begin(sha256_ctx ctx[1]);
|
||||
VOID_RETURN sha256_hash(const unsigned char data[], unsigned long len, sha256_ctx ctx[1]);
|
||||
VOID_RETURN sha256_end(unsigned char hval[], sha256_ctx ctx[1]);
|
||||
VOID_RETURN sha256(unsigned char hval[], const unsigned char data[], unsigned long len);
|
||||
|
||||
#ifndef SHA_64BIT
|
||||
|
||||
typedef struct
|
||||
{ union
|
||||
{ sha256_ctx ctx256[1];
|
||||
} uu[1];
|
||||
uint32_t sha2_len;
|
||||
} sha2_ctx;
|
||||
|
||||
#else
|
||||
|
||||
#define SHA384_DIGEST_SIZE 48
|
||||
#define SHA384_BLOCK_SIZE 128
|
||||
|
||||
#define SHA512_DIGEST_SIZE 64
|
||||
#define SHA512_BLOCK_SIZE 128
|
||||
|
||||
#define SHA512_128_DIGEST_SIZE 16
|
||||
#define SHA512_128_BLOCK_SIZE SHA512_BLOCK_SIZE
|
||||
|
||||
#define SHA512_192_DIGEST_SIZE 24
|
||||
#define SHA512_192_BLOCK_SIZE SHA512_BLOCK_SIZE
|
||||
|
||||
#define SHA512_224_DIGEST_SIZE 28
|
||||
#define SHA512_224_BLOCK_SIZE SHA512_BLOCK_SIZE
|
||||
|
||||
#define SHA512_256_DIGEST_SIZE 32
|
||||
#define SHA512_256_BLOCK_SIZE SHA512_BLOCK_SIZE
|
||||
|
||||
/* type to hold the SHA384 (and SHA512) context */
|
||||
|
||||
typedef struct
|
||||
{ uint64_t count[2];
|
||||
uint64_t hash[SHA512_DIGEST_SIZE >> 3];
|
||||
uint64_t wbuf[SHA512_BLOCK_SIZE >> 3];
|
||||
} sha512_ctx;
|
||||
|
||||
typedef sha512_ctx sha384_ctx;
|
||||
|
||||
typedef struct
|
||||
{ union
|
||||
{ sha256_ctx ctx256[1];
|
||||
sha512_ctx ctx512[1];
|
||||
} uu[1];
|
||||
uint32_t sha2_len;
|
||||
} sha2_ctx;
|
||||
|
||||
VOID_RETURN sha512_compile(sha512_ctx ctx[1]);
|
||||
|
||||
VOID_RETURN sha384_begin(sha384_ctx ctx[1]);
|
||||
#define sha384_hash sha512_hash
|
||||
VOID_RETURN sha384_end(unsigned char hval[], sha384_ctx ctx[1]);
|
||||
VOID_RETURN sha384(unsigned char hval[], const unsigned char data[], unsigned long len);
|
||||
|
||||
VOID_RETURN sha512_begin(sha512_ctx ctx[1]);
|
||||
VOID_RETURN sha512_hash(const unsigned char data[], unsigned long len, sha512_ctx ctx[1]);
|
||||
VOID_RETURN sha512_end(unsigned char hval[], sha512_ctx ctx[1]);
|
||||
VOID_RETURN sha512(unsigned char hval[], const unsigned char data[], unsigned long len);
|
||||
|
||||
VOID_RETURN sha512_256_begin(sha512_ctx ctx[1]);
|
||||
#define sha512_256_hash sha512_hash
|
||||
VOID_RETURN sha512_256_end(unsigned char hval[], sha512_ctx ctx[1]);
|
||||
VOID_RETURN sha512_256(unsigned char hval[], const unsigned char data[], unsigned long len);
|
||||
|
||||
VOID_RETURN sha512_224_begin(sha512_ctx ctx[1]);
|
||||
#define sha512_224_hash sha512_hash
|
||||
VOID_RETURN sha512_224_end(unsigned char hval[], sha512_ctx ctx[1]);
|
||||
VOID_RETURN sha512_224(unsigned char hval[], const unsigned char data[], unsigned long len);
|
||||
|
||||
VOID_RETURN sha512_192_begin(sha512_ctx ctx[1]);
|
||||
#define sha512_192_hash sha512_hash
|
||||
VOID_RETURN sha512_192_end(unsigned char hval[], sha512_ctx ctx[1]);
|
||||
VOID_RETURN sha512_192(unsigned char hval[], const unsigned char data[], unsigned long len);
|
||||
|
||||
VOID_RETURN sha512_128_begin(sha512_ctx ctx[1]);
|
||||
#define sha512_128_hash sha512_hash
|
||||
VOID_RETURN sha512_128_end(unsigned char hval[], sha512_ctx ctx[1]);
|
||||
VOID_RETURN sha512_128(unsigned char hval[], const unsigned char data[], unsigned long len);
|
||||
|
||||
INT_RETURN sha2_begin(unsigned long size, sha2_ctx ctx[1]);
|
||||
VOID_RETURN sha2_hash(const unsigned char data[], unsigned long len, sha2_ctx ctx[1]);
|
||||
VOID_RETURN sha2_end(unsigned char hval[], sha2_ctx ctx[1]);
|
||||
INT_RETURN sha2(unsigned char hval[], unsigned long size, const unsigned char data[], unsigned long len);
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
81
crypto/src/main/jni/final_key/sha/shasum.c
Normal file
81
crypto/src/main/jni/final_key/sha/shasum.c
Normal file
@@ -0,0 +1,81 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2010, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation.
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its operation, including, but not limited to, correctness
|
||||
and fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "sha2.h"
|
||||
|
||||
#define BUF_SIZE 16384
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{ FILE *inf;
|
||||
sha256_ctx ctx[1];
|
||||
unsigned char buf[BUF_SIZE], hval[SHA256_DIGEST_SIZE];
|
||||
int i, len, is_console;
|
||||
|
||||
if(argc != 2)
|
||||
{
|
||||
printf("\nusage: shasum filename\n");
|
||||
exit(0);
|
||||
}
|
||||
|
||||
if(is_console = (!strcmp(argv[1], "con") || !strcmp(argv[1], "CON")))
|
||||
{
|
||||
if(!(inf = fopen(argv[1], "r")))
|
||||
{
|
||||
printf("\n%s not found\n", argv[1]);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
else if(!(inf = fopen(argv[1], "rb")))
|
||||
{
|
||||
printf("\n%s not found\n", argv[1]);
|
||||
exit(0);
|
||||
}
|
||||
|
||||
sha256_begin(ctx);
|
||||
do
|
||||
{
|
||||
len = (int)fread(buf, 1, BUF_SIZE, inf);
|
||||
i = len;
|
||||
if(is_console)
|
||||
{
|
||||
i = 0;
|
||||
while(i < len && buf[i] != '\x1a')
|
||||
++i;
|
||||
}
|
||||
if(i)
|
||||
sha256_hash(buf, i, ctx);
|
||||
}
|
||||
while
|
||||
(len && i == len);
|
||||
|
||||
fclose(inf);
|
||||
sha256_end(hval, ctx);
|
||||
|
||||
printf("\n");
|
||||
for(i = 0; i < SHA256_DIGEST_SIZE; ++i)
|
||||
printf("%02x", hval[i]);
|
||||
printf("\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
21
crypto/src/main/res/values/strings.xml
Normal file
21
crypto/src/main/res/values/strings.xml
Normal file
@@ -0,0 +1,21 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<!--
|
||||
Copyright 2021 Jeremy Jamet / Kunzisoft.
|
||||
|
||||
This file is part of KeePassDX.
|
||||
|
||||
KeePassDX is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
KeePassDX is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with KeePassDX. If not, see <http://www.gnu.org/licenses/>.
|
||||
-->
|
||||
<resources xmlns:tools="http://schemas.android.com/tools" tools:ignore="MissingTranslation">
|
||||
</resources>
|
||||
Reference in New Issue
Block a user